CENTRAL UNIVERSITY OF RAJASTHAN

Department of Chemistry, School of Chemical Sciences and Pharmacy

(Attempt any 12 questions; Each Question carries 5 marks)

1. Answer the following questions with explanation? (a) Compare the melting point of $\mathrm{AgNO}_{3}, \mathrm{~K}_{2} \mathrm{SO}_{4}, \mathrm{MgSO}_{4}$ (b) Among CaCl_{2} and MgCl_{2} which compound will form harder crystal lattice? (c) Arrange following in correct order of increasing $\mathrm{C}-\mathrm{O}$ bond length of $\mathrm{CO}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{CO}_{2}$
($1.5+\mathbf{1 . 5}+\mathbf{2}$ marks)
2. (a) Derive an equation (Born-Landé) for the theoretical calculation of lattice energy. (b). Draw shape of following molecules using VSEPR theory: $\mathrm{PCl}_{3} \mathrm{~F}_{2}, \mathrm{XeF}_{6}$.
(3+2 marks)
3. (a) When a mole of crystalline NaCl is prepared from 1 mole of $\mathrm{Na}(\mathrm{s})$ and half a mole of $\mathrm{Cl}_{2}(\mathrm{~g}), 410 \mathrm{~kJ}$ of heat is produced. The heat of dissociation of $\mathrm{Cl}_{2}(\mathrm{~g})$ is $242 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and the electron affinity of $\mathrm{Cl}(\mathrm{g})$ is $368 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The sublimation energy of $\mathrm{Na}(\mathrm{s})$ is 109 kJ mol^{-1} and the ionization energy of $\mathrm{Na}(\mathrm{g})$ is $495 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the lattice energy of NaCl fromthis data.
(b) Show the linear combination of p-p, and p-d orbitals pictorially.
4. (a) Is $\mathrm{O}_{2}{ }^{-}$diamagnetic or paramagnetic? Justify your answer using molecular orbital diagram. (b) Predict hybridization in following molecules (a) Xenon of XeOF_{4} (b) Nitrogen of $\mathrm{RCH}=\mathrm{N}-\mathrm{CH}_{3}$ (c) In C2-C3 carbon of
5. (a) The wavelengths of two photons are $2000 \AA$ and $4000 \AA$ respectively. What is the ratio of theirenergies? (b) The minimum energy necessary to overcome the attractive force between the electron and the surface of silver metal is $52 * \pm 0^{19} \mathrm{~J}$. What will be the maximum kinetic energy of the electrons ejected from silver metal which is boing irradiated with UV lighthaving a wavelength of $360 \AA$. (c) Name the scientist who discovered photo electric effect.
(2+2+1 marks)
6. (a) How many d orbitals are there? Give their names and draw their orbital representations. (b) Find the ground state term symbol for the atom of atomic number 9 and 22.
(3+2 marks)
7. (a) Calculate the effective nuclear charge for the atomic number 14 and 34 . (h) Arrange 3 d berigd elements of periodic table in increasing order of ionization energy and justify your answer?
($1.5+1.5+2$ marks)
8. (a) Compare first and second Ionization Energy of Cr and Mn with proper justification of your answer? (b) Write short note on lanthanoid contraction.
(3+2 marks)
9. (a) Define the conjugate acid and conjugate base pair concept of Brownsted-Lowery theory with suitable example. (b) State the formula and the name of the conjugate acid of each of the following bases: (a) $\mathrm{HCO}_{3}{ }^{-}$(b) $\mathrm{HPO}_{4}{ }^{2-}$ (c) Define amphoterism with suitable examples?
10. Derive Henderson Hasselbalch Equation for the dissociation of a weak acje. Explavn how it helps to determine pKa (acid dissociation constant)?
11. Define indicator. Write structure, observed colour chafge with pH_{H} and chemical reactions involved during titration for the following indicators: (a) Phenolphthalein at pH 9 ; (b) Methyl Orange at $\mathrm{pH} 5 .(\mathbf{1}+\mathbf{2}+\mathbf{2}$ marks)
12. (a) An ammonia solution has a hydroxide-ion concentration $9 \times 10^{-3} \mathrm{M}$. What is the pH of the solution? (b) Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{pH}$, and pOH in $0.10 \mathrm{MrCl} \quad$ ($\mathbf{2 + 3}$ marks)
13. (a) What are super acids. (b) Write the Hanmety acidity fanction expression with meaning of each term. (c) Name four super acids with their H_{0} values.
14. Draw the structures of magneson and cupferon. Explein their applications in semi-micro inorganic qualitative analysis? ($\mathbf{5}$ marks)
15. Write the complete following reactions in your answer sheets:
(1 *5 marks)

(Attempt any 12 Questions, each question carries 5 marks)

1. (a) Arrange following in the decreasing order of O-O stretching frequency: $\mathrm{O}_{2}, \mathrm{O}_{2}{ }^{+}, \mathrm{O}_{2}{ }^{-}, \mathrm{O}_{2}{ }^{2-}$. (b) Derive Hills equation and show the graphs which helps in evaluating cooperativity. (2+3)
2. Describe one model systems for the mimic of haemoglobin, hemocyanin and hemerythrin. (5)
3. Which metalloenzyme can catalyse the following reaction? Describe the active site and mechanism. (5)

4. (a) Write the principle for using a "contrast agent" in magnetic resonande imaging with the structures for two MRI contrast agents. (b) How Wilson disease occurs? Discuss in brief wjet cause mechanism and possible treatments. (3+2)
5. Discuss the catalytic cycle and the "active oxygen species" to cary out the monooxygenation of substrates in Cytochrome-P450 class of enzyme? (5)
6. (a) Write a role of metal ions in the pathogenesis, possible treatments for Alzheimers disease. (b) Write a short note on Parkinson Disease. (3+2)
7. Discuss the various spectroscopic and other techniques used for determining the active site structure determination for an intradiol dioxygenase. (5)
8. Identify the metalloenzyme capable of catalysing the foflowing reaction and write down the catalytic cycle:

9. "I am a metalloenzyme responsible for the synthesis of a pighent responsible for your skin colour, browning of fruits etc. and I have two catalote cycles within meghanism", Who am I? Can you write my active site structure and mechanism? (5)
10. (a) What is the role of superoxide dismutase in our body, describe how it works? (b) Comment on the different types, structure and functions ofiron-sulphur brotetins. (2+3)
11. Write a brief note on the discovery of CisADP. Write the detailed mechanism of action of drug with a mention of side effects. (5)
12. (a) What is the principle of PET imaging? Which imaging technique is more sensitive between PET and SPECT and why? (b) Why ${ }^{64} \mathrm{Cu}$ should be beneficial over ${ }^{18} \mathrm{~F}$ as radiotracer in PET imaging? (3+2)
13. (a) Write the active site structure of Horseradish peroxidase, how is it different from the one in chloroperoxidase? (b) How the attiye site structure of Alcohol dehydrogenase looks like, describe its mechanism also. (2.5+2.5)
14. Ho the three classes of Cu metelloenzymes are different from each other both in structure and spectroscopic features? Give at least one example,of each. (5)
15. Draw the Vitamin $B 12$ active site structure and discuss the mechanism of the chemical reaction catalysed by it.
(5)

CENTRAL UNIVERSITY OF RAJASTHAN

Department of Chemistry, School of Chemical Sciences and Pharmacy
M.Sc. (2Y, 5Y, 3Y); End of Semester Examination, Date: $01^{\text {st }}$ May, 2019

Course Name: Coordination Chemistry; Course Code: CHM-405

(Q1 is compulsory; Attempt any other 10 Questions carrying 5 marks each)

1. Find out for which system the given table of microstates corresponds to? Can you reduce the table to its constituent free ion terms? (10)

		M_{L}								
		4	3	2	1	0	-1	-2	-3	-4
Ms	1		1	1	2	2	2	1	1	
	0	1	2	3	4	5	4	3	2	1
	-1		1	1	2	2	2	1	1	

2. The compound trans- $\mathrm{Fe}(\mathrm{O}-\mathrm{phen})_{2}(\mathrm{NCS})_{2}$ has a magnetic moment of 065 BM at 80 K , increasing with temperature to 5.2 BM at 300 K . Assuming a spin-only magnetic moment, ealculate the number of unpaired electron at these temperatures. How the increase in magnetic moment with temperature could be explained at these two temperatures?
3. Calculate the diamagnetic correction to magnetic susceptibility for the following molecule (Pascal's constants are given at the end) (5)

4. Draw the single Orgel diagram for $d^{2}, 7^{7} / d^{3}, d^{8}$ systems in tetranedral and octahedral ligand field. How many absorption bands are expected for $N 1$ complex? (5)
5. Ni^{2+} is having two unpaired electrons but its magnetie moment is higher than spin-only. Can you suggest a reason for that? (ii) Show the calcutation for getting $\mu_{\text {erts }}=2.828\left(\chi_{\mathrm{M}} \mathrm{T}\right)^{1 / 2} .(\mathbf{2} .5+\mathbf{2 . 5})$
6. What is Curie law? Derive the magnetzation and magnetic susceptibility expressions for an isolated $\mathrm{S}=1 / 2$ system with no orbital contribution. (5)
7. (i) Define A, I_{a}, D and I_{d} mechanisms of substitution in square planar complexes. Can you suggest the situations in which these ill be favoared or disfavoured? (ii) Write a short note on Trans Effect with its application in inorganicyeaction medtanstr. (2.5+2.5)
8. (i) What is Nephelauxetic effect? (ii) Draw the MO diagram for $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and explain the spin state and magnetic property for the same. (174),
9. (i) Why KMnO_{4} solutions are deep purple in colour but MnSO_{4} gives only light pink solution? (ii) Calculate the spin-only magnetic moment for the complexes: $\left[\mathrm{MnCl}_{6}\right]^{4-}$ and $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4-}$. (iii) Which of these two complexes should absore bigher wavelengths of incident radiation? (2+2+1)
10. (i) What are spin and Laporte selection rules, explain with examples? (ii) What is heavy atom effect? (iii) Determine the ground state terms for the following configurations: d^{8} (Oh symmetry) and d^{5} (HS and LS) (Oh symmetry). $(\mathbf{2 . 5}+\mathbf{1 + 1 . 5})$
11. (i) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ spectra has an absorption band at $\sim 520 \mathrm{~nm}$ and in addition has a closely associated shoulder band. How would you explain it? (ii) Draw the d-orbital splitting for an Oh symmetry reducing to z-in and zout. (3+2)
12. Explain the number of lines observed in the X-band EPR spectra of the following complex at 298 K (a) and 120 K (b) (ref: Inorg. Chim. Acta 361, 2008, 2768). (5)

2

13. i) What are stepwise and overall stability constants? Establish a relation between the of HYSS program? (4+1)
14. What do you understand by Thermodynamic and Kinetic stability of a metalcomplex? When do you call a complex inert or labile? (5)
15. Discuss and in detail the outer sphere and inner sphere mechanism of electron transfer examples? How to differentiate between the two mechanisms? (5)

Table of Pascal's constants:

Atoms, x_{1}			Bonds, χ_{B}		
Atom	$\begin{gathered} \chi_{\lambda}\left(\times 10^{-6}\right. \\ \left.\mathrm{cm}^{3} \text { mole }^{-1}\right) \end{gathered}$	Atom	$\underset{x_{A}}{\boldsymbol{x}_{A}} \times 1 \times 10^{-6}$	Bond	$\chi^{\chi}\left(\times 10^{-6} \mathrm{~cm}^{3}\right.$ mole $\left.{ }^{-1}\right)$
H	-2.93	F	-63	$\mathrm{C}=\mathrm{C}$	+ 5.5
C	-6.00	Cl	-20.1	$\mathrm{C} \equiv \mathrm{C}$	+0.8
C (aromatic)	-6.24	Br	-30.6	$\mathrm{C}=\mathrm{N}$	+8.2
N	-5.57	I	-44.6	$\mathrm{C} \equiv \mathrm{N}$	+0.8
N (aromatic)	-4.61	Mg^{2+}	-5	$\mathrm{N}=\mathrm{N}$	+1.8
N (monamide)	-1.54	Zn^{2+}	-15	$\mathrm{N}=\mathrm{O}$	$+1.7$
N (diamide, imide)	-2.11	Pb^{2+}	- 32.0	$\mathrm{C}=\mathrm{O}$	+6.3
0	-4.61	Ca^{2+}	-10.4		
O_{2} (carboxylate)	-7.95	Fe^{2+}	-12.8		
S	-15.0	Cu^{2+}	-12.8		
P	-26.3	$\xrightarrow{\mathrm{Co}^{2+}} \mathrm{Ni}^{2+}$	-12.8 -12.8		

Also given that:
$\mathrm{k}=1.38 \times 10^{-16} \mathrm{erg} / \mathrm{K}$
$\mu_{\mathrm{B}}=9.274 \times 10^{-21} \mathrm{G} \mathrm{cm}^{3}$
$\mathrm{~N}_{\mathrm{A}}=6.023 \times 10^{23} \mathrm{~mol}^{-1}$

CENTRAL UNIVERSITY OF RAJASTHAN

Max. Marks: 60

PART A (Attempt any Seven Questions)

1. (a) The following compound can undergo nucleophilic addition at position $1,2,3$ and 4 . This addition of nucleophile on alkene is possible due to umpolung effect. Which of the position will be fastest nucleophilic (Nu^{-}) attack? Sketch the structure of the product after nucleophilic attack.

(b) Arrange the following in order of their increasing $v_{\mathrm{C}-\mathrm{O}}$ stretching frequency $\left.\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+},\left[\mathrm{Cr}(\mathrm{CO})_{6}\right], \mathrm{CO}(\mathrm{CO})_{6}\right]^{-}, \mathrm{CO}$ and $\left[\mathrm{Ti}(\mathrm{CO})_{6}\right]^{2-}$.
(c) Write the structure of most appropriate reagent for the following transformation.

2. (a) Predict the product from the given sets of reagents:
(i) Ferrocene, acetylchloride, AlCl_{3} (1:2:2 ratio)
(ii) Ferrocene, n-BuLi, TMEDA
(iii) Ferrocene, $\mathrm{HCHO}, \mathrm{HNMe}_{2}, \mathrm{AcOH}$
(b) What is carbenoid? Give an example of carbenoid.

3. (a) Give the total metal electron counts, and metal d^{n} numbers for the following complexes
(i). $\mathrm{K}\left[\mathrm{PtCl}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$
(ii). $\left(\mathrm{PPh}_{3}\right) \mathrm{AuCl}_{6} \square$ (iii). $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$
(b) What is Hapticity and Denticity? Explain with example
4. (a) What is the difference between Nuclear Transmutation and Nuclear Pission? Explain with examples.
(b) Discuss the application isotope in chemical reaction pathway and structural determination.
(c) What is the end of the product of $4 n+2$ series? Write the number of ' α ' and ' β ' particles are emitted in this series. [
5. (a). Define Law of radioactivity. Derive the equation $N=N_{0} e^{-k}$, where N is the number of particles at any instant and N_{0} is number of particles at time $t=0$.
(b). How boron is used for the treatment of brain cancer? Explain.
[2]
6. (a) A freshly prepared isolated sample of ${ }^{9}$ St was found to have an activity of 9.8×10^{5} disintegrations per minute at 1.00 PM on December 3,1992 At 2.15 PM on December 17, 1993, its activity was determined and found to be 2.6×10^{4} disintegrations per minute. Calculate the hall-life of ${ }^{90} \mathrm{Sr}$.
(b) How old is the sample of wood whose ${ }^{4} \mathrm{C}$ content is found to be 43% that of a living tree? The half-life of ${ }^{14} \mathrm{C}$ is 5730 years.
(c) What radionuclide is used for lungs and liver disease diagnosis?
[2]
7. (a) Write the difference between half-life and average life of radioactive substance.
(b) A sample to be used for medical imaging is labeled with ${ }^{18} \mathrm{~F}$, which has a half-life of 110 minutes. What percentage of the original activity in the sample remains after 300 minutes? Calculate the average life of ${ }^{18} \mathrm{~F}$. [3]
8. (a) Cobalt-60 is used in the radiation therapy of cancer. How it can be synthesized from cobalt-59? Write the nuclear reaction.
[2]
(b) Write the difference between isotone and isobar (with examples).
(c) Radon-222, which is found in the air inside houses built over soil containing uranium, has a half-life of 3.02 days. How long before a sample decreases to $1 / 64$ of the original amount?

PART B (Attempt any five Questions)

9. (i) What is octahedral site preference energy (OSPE)? Calculate OSPE for d^{1} and d^{9} systems. (2.5)
(ii) Calculate the difference between CFSE of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ and $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$.
10. Write the main postulates of CFT. It is observed that crystal field splitting in tetrahedral ligand field is $\sim 0.44 \Delta_{0}$ ($\Delta_{\mathrm{o}}=$ Octahedral splitting). Explain why? (2+3)
11. What are spinels? How CFSE helps in predicting the structure of spinels? Predict the structure of $\mathrm{Mm}_{3} \mathrm{O}_{4}$ and $\mathrm{NiFe}_{2} \mathrm{O}_{4}$. [5]
12. Draw the complete splitting diagram as per CFT for the square pyramidal, trigonal bipyramidat, etrahedral and square planar geometries. [5]
13. (i) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ spectra has an absorption band at $\sim 520 \mathrm{~nm}$ and in addition has a closely assocrated shoulde band. How would you explain it? (3)
(ii) Draw the d-orbital splitting for an octahedral symmetry reducing to Z-in and Z-qut. (2)
14. Define Bioinorganic Chemistry with its scope. Classify the elements which are biologically important. (5)
15. (i) Write Jahn-Teller theorem. (1)
(ii) Draw the graph of lattice energy for divalent transition metal ions, justify your answer (4)

Exam-from-home mode

SECTION A (Q1 to Q6: Attempt any Five questions; Each Question carries 3 marks)

1. Assign the oxidation states, d^{n} configurations, and electron counts for the two species shown below, which are equilibrium in solution.

$$
\mathrm{W}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{3}\left(\mathrm{AsPh}_{3}\right)_{2} \Leftrightarrow \mathrm{~W}(\mathrm{H})_{2}(\mathrm{CO})_{3}\left(\mathrm{AsPh}_{3}\right)_{2}
$$

2. A complex has the empirical formula $\left(\mathrm{PPh}_{3}\right) \mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}$. How could it attain the 18-electron configuration without requiring any additional ligands?
3. Write the increasing order of v_{CO} stretching frequency for following species:

$$
\left[\mathrm{Cr}(\mathrm{CO})_{6}\right],\left[\mathrm{Ti}(\mathrm{CO})_{6}\right]^{2-},\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}, \mathrm{CO},\left[\mathrm{Fe}(\mathrm{CO}) 1^{2-} \mathrm{VV}(\mathrm{CO})_{6}\right]^{-}
$$

4. Reaction of $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$ with $\mathrm{LiC}_{6} \mathrm{H}_{5}$ gives \mathbf{X}, which reacts with $\left[\mathrm{Me}_{3} \mathrm{O}\right]\left[\mathrm{BF}_{4}\right]$ to give $\mathbf{~ W r i t e}$ the structures of \mathbf{X} and Y.
5. Two electron electrochemical reduction of the 18 -electron cation $\left[\left(\left(\eta^{-} \text {-indenyl }\right)_{2} y(\mathrm{CO})_{2}\right]^{+}\right.$is reversible while the same reduction of the complex $\left[\mathrm{Cp}_{2} \mathrm{~V}(\mathrm{CO})_{2}\right]^{+}$leads to the cleavage of molecule 0 CO . Give reasons.
6. What are the factors which facilitate the reductive elimination? Explain with examples.

7. (a) Analyse and give your thoughts on the following sentences by using suitable examples.
N-heterocyclic carbene ligand is a ubighitous ligand in organometallic chemistry. This ligand is a phosphine substitutes in catalytic applications.
(b) Suggest an efficient method for preparing $\mathrm{Cp}(\mathrm{CO})_{3} \mathrm{MOCH}_{3}$ from $\mathrm{Cp}(\mathrm{CO})_{3} \mathrm{MoH}$.
(c) A Schrock type carbene based reagent used for converting carbonyl groups to methylene group.

Name the reagent and discuss its synthesis.
(2)
8. (a) What are the various factors favonred for the X_{2}-type bonding in metal-olefin complex? Explain with suitable examples.
(b) Draw a diagram that illustrates the bonding and back-bonding interactions for a metal-alkyne complex. (5) (c) What is the difference between classical metal carbonyls and non-classical metal carbonyls? Give examples. (3)
(d) Why patladium-allyl complexes are more reactive? (2)
9. (a) Give an example of organometallic compound which shows like a molecular propeller. Discuss its fluoxionality behaviour.
(5)
(b) Trihaptoallyl-palladium chloride complex is fluxional in nature. What you will expect from its variable temperature ${ }^{1} \mathrm{H}$ NMR spectrum data? Explain with diagram. (5)
(c) What is metal hopping? Can you observe this fluxional behaviour in variable temperature NMR data? (5)
10. Write the expected product after a hydride ion attack on each of the following:

Exam-from-home mode

Section A

(Attempt any 5 Questions, each question carries 3 marks)

1. Describe one structural and functional model systems of myoglobin and hemocyanin. Write the name of scientist discovered these.
2. What are the elements being used to develop metal complexes for anticancer activity and why? (b) Write the detailed mechanism of action of drug cisplatin.
3. Show how to derive the Hills equation and the graphs using it that helps in evaluating cooperativityiv dioxygen binating in hemoglobin.
4. Write the principle for using a "contrast agent" in magnetic resonance imaging with the structures for two MRI/contrastagents.
5. What are the evidences and hypothesis for the roles of metal ions in the pathogenesisof Alzheimer's diseas? Suggest a possible treatment method with justification.
6. How the three classes of Cu metalloenzymes are different from each other bothein struchure and spectroscopic features? Give at least one example of each.

Section B
(Attempt any 3 Questions, each question carries 15 marks)
7. (a) See the reaction given below and suggest a metalloenzymethat can catalyse this reaction. Describe the active site and most plausible mechanism. (8)

(b) Why is CYP450 so important? Discuss the catalytic cycle and the "active oxygen species" to carry out the monooxygenation of substrates in Cytochrome-P450 class of enzyme? (7)
8. Describe the information obtained fomvarious spectroscopie and other techniques used for determining the active site structure determination for an intradiol dioxygenase (15)
9. Carefully see the reaction given below and write the detaited mechanism of a metalloenzyme capable of catalysing such reactions.

10. (a) "I am a metalloenzyme having two catalytic cycles within my mechanism. I help in the synthesis of a pigment responsible for your skin colour, browning of raits etc.". Who am I and which pigment I am talking about? Can you write my active site structure and detailed mechanism? (10)
(b) What is the principle of PET imagin? Which imaging technique is more sensitive between PET and SPECT and why? (5)

(Attempt any twelve questions; Each Question carries 5 marks) [12x5=60 marks]

1. Analyze the green route of producing Ibuprofen, discussing the reaction pathway to be followed and in which ways it is better than the traditional method of synthesizing the same.
2. (a). In 1990, Haber et al. developed the synthesis of aniline from nitrobenzene by electrochemical reduction. Write all the intermediates formed from the above reaction.
(b). Explain the following: (i). Hazard and Risk,
(ii) Non-covalent derivatization.
 examples.
(b). Give an example of surfactant. Discuss its role in organic reaction with example.
3. (a). Describe the pathways which should be followed to synthesize the n-nonane from 5-hydroxymethyl-2-furfural (HMF).
(b). Highlight the differences between microwave heating and comventignal heating.
(b).
4. (a). Write the various factors influences the reactivity and selectivity in catabytic hydrogenation reaction by heterogeneous catalyst.
(b). Sketch the structure of Grubb's second generation catalyst for metathesis reaction.
5. (a). An industrial process (Wacker oxidation process) used forthe synthes of acetaldehyde from ethylene by palladium catalyst and copper as co-catalyst. Draw thecatalytic cycle
(b). What is supercritical fluid? Draw the phase diagram of carbon dioxide.
6. (a). Define the turnover number of an enzyye. 1.5 gm of an enzyme (Molecular weight-32000), in presence of excess substrate catalyzes at a rate of 3.2 mol substrate/min. Calculate the TON. $\quad[\mathbf{1 + 2}]$
(b). Calculate the atom economy and Reaction Mass Efficiency (RME) of the following reaction. $[\mathbf{1 + 1}]$

7. Explain the consequences (cons and pros) of using solvents in chemical reactions. How would you rationalize water as green solyents
8. (a). Is the use of ultrasound for doing a chemical reaction really a green chemistry? Explain by using the principles of Green Chemisty.
(b). Discuss the following malticomponent reactions with mechanism,
(i) Passerini reaction,
(ii). Biginelli reaction.
9. (a). Discuss the different categories in which EPA honors winners for the Presidential Green chemistry award.
(b). Provide the greener route of synthesizing the following compounds.
[1.5+1.5]
(i) Indigo,
(ii). Lexan
10. (a). Calculate the Atom economy, Reaction Mass efficiency and carbon efficiency in the following reaction.

(b). DuPont has won the 2003 Presidential Green Chemistry award for the manufacture of a polymer. Draw the structure of polymer and explain its synthesis.
11. (a). Write the differences between cationic clays and anionic clays. How is it diferent from zeolites in terms of structural arrangement?
(b). Define the following terms: (i) SEALINE ${ }^{\mathrm{TM}}$, (ii) Risk assessment.
12. (a). Predict the product in the following reaction, and suggest the mechanism of the product formation.

(b). Define combinatorial chemistry. How is it different from conventional strategies?

13. Define and interpret the $10^{\text {th }}$ and $11^{\text {th }}$ principles of Gfeen Chemistry with suitable examples.

CENTRAL UNIVERSITY OF RAJASTHAN
 DEPARTMENT OF CHEMISTRY

End of Semester Examination

Int. M.Sc. (5 yr) Chemistry; Semester V
 Course Name: Organic Chemistry-II

PART A

Time allowed: $\mathbf{4 0} \mathbf{~ m i n}$
Max marks: 20

Answer ANY 4 questions

(5 marks $\times 4=20$)
1: What is aldol reaction? Explain with examples and write the mechanisms for bothacid and base catalyzed aldol reaction.

2: Indicate the given compounds as aromatic/non-aromatic/anti-aromatic.

c

d

e

3: a) Which among these will have high basicity and why?

a

b

b) Which among these will have low pKa value and why?

a

b
4: a) Write the structure of pentaerythritol. How it canbe synthesized? Name the reaction.
b) Will p-nitrobenzaldehyde give benzoincondensation? Provide suitable explanation.

5: a) What are benzynes? Write any two whes to synthesize benzyne.
b) How to synthesize the product jir given feaction starting from anisole?

PART B

Time allowed: $\mathbf{8 0} \mathbf{m i n}$

Answer ANY 2 questions

6. (a) Explain the reason for site of electrophilic reactions occurring at 2-position instead of 3-position in 5-membered heterocycles.

$1 \quad \mathrm{E}^{+}=$electrophile
$\mathrm{X}=\mathrm{O}, \mathrm{S}, \mathrm{N}$
(b) Write the product obtained in following reaction along with reaction mechanism.

(c) How to synthesize 2-amino pyridine from pyridine? What is the name and mechanism of the reaction?
(d) What is Ehrlich test? Write the reaction and mechanism.
7. (a) Write the product and mechanism of following reaction. Also mention the name of reaction.
i)

ii)

(b) Write the product and mechanism of the given reaction

8. (a) Write Fisher-Indole synthesis along with mechanist.
(b) Write Hantzsch Synthesis of Pyridine along with mechanism.
(c) Which among the pyrole, thiophene, and furan is
i) most aromatic and why?
ii) mostreactive towards electrophilic aromatic substitution and why?

CENTRAL UNIVERSITY OF RAJASTHAN
 DEPARTMENT OF CHEMISTRY

M.Sc. / Int. M.Sc. B.Ed. / Int. M.Sc. Chemistry; Semester II / VIII
 End of Semester Examination

CHM-406
Synthetic Methods in Organic Chemistry
$7^{\text {th }}$ May 2019
Time allowed: $\mathbf{3}$ h
Max marks: 60
Answer ANY 12 questions
$(5$ marks $\times 12=60)$
(For subdivisions where individual marks are not specified, total marks of the question shall be divided equally).

1. Predict the major product(s) of the reactions given below:
(i)

(iii)

(ii)

(iv)

2. Identify \mathbf{P} and \mathbf{Q} in the sequence given below. Outline a mechanism for the formation of \mathbf{P}_{\odot} What would be the mino product of this transformation? Justify your answer.

3. (i) In Nicolaou's total synthesis of taxol (Ref.: J. Am. Chem. Soc. 1995, 117,653) the carbonyl group in \mathbf{A} was converted into a nucleophilic vinyl Lithium species (shown below). Outline a mechanism for the reaction and also identify the name of the reaction.

difference between
(ii) Bring out the major chemoselectivity

LiBH and BH_{3} as reducing agents using suitable examples. Why is this difference observed?
4. (i) Outline a mechanism for the converston of \mathbf{P} to \mathbf{Q}. Whatisthis method of reduction called? What would be the most appropriate reagent for converting \mathbf{Q} back to \mathbf{P} ?

(ii) How can you execute the following transformation (outline the steps):

5. An gptically active compound $\mathbf{A}\left(\mathrm{C}_{1} \mathrm{H}_{16}\right)$ undergoes the reactions shown below. Deduce the structure of $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{E} from the given data and assignt the configuration of \mathbf{A}.

A
D is

6. David Evans used his asymmetric aldol protocol in the enantioselective total synthesis of the marine natural product (+)calyculin A (Ref: J. Am. Chem. Soc. 1992, 114, 9434). The key reaction in the synthesis is shown below. Answer the questions that follow based on the same:

(i) Which of the 3 non-chelated transition states shown below represents the correct and most favourable one for the reaction? Justify by elucidating why the other two T.S.'s are unfavourable.

The Bu groups on the Boron are not displayed for better clarity
(ii) Illustrate the structure of the product with the correct absolute stereochemistry its open chain conformation. Mark the product as the syn or anti diastereomer.
7. zsasssdddaysyyesqwqqaKaori Ando et al developed a practical olefination reaction under mildeonditions using benzimidazol-2-yl sulfone reagent (Ref.: Org. Lett. 2015, 17, 2554). Predict the structure of \mathbf{Q} and outline a step-wise mechanism for this conversion, clearly illustrating the intermediates and the side-products

8. (i) Bring out the two major features of the Shibasaki aldol reaction that distidguishes it from other aldol addition methods.

C
(ii) Provide a suitable mechanism for the reaction given below. Writethe structure of any two other possible products of the reaction (at least one of them SHOULD NOT be a stereoisomerof \mathbf{P}).

9. (i) Identify the missing reagents/products in the scheme given, below

(3)
(ii) Predict the prodycts (with the correct stereochemistry wherever appropriate)
(a)

(b)

10. (i) What do youexpect whend-chloro cyclohexanone reacts with NaOMe in MeOH ? Outline a suitable mechanism and identily the name of the reaction.
(ii) Outlinea suitable mechanism and identify the name of the reaction given below:

11. (i) Outline a mechanism and identify the name for the reaction shown below:

(ii) Predict the products and identify the name (wherever appropriate):
(a)

12. Illustrate a suitable mechanism for the conversions shown below:
(I)

(ii)

13. Outline a mechanism for the reaction given below:

(ii) Predict the product of the reaction given below:

14. Predict the missing products of all the reactions giyen below. Also identify anytwo named reactions.

(iii)

15. Predict the product and outline a suitable mechanismfirst 2 catalytic cycles) for the reaction shown below (short form of the catalyst may be used)

CENTRAL UNIVERSITY OF RAJASTHAN

PART A

(Q1 to Q6: All questions are compulsory; Each Question carries 3 marks)

1. Draw structures for each of the following: (a) 4-chloro-3,5-dimethylphenol; (b) cyclopropyl propyl ether; (c) bromopropanone
2. (i) Which of the following sodium fusion extract of organic compound gives brilliant violet color with sodium nitroprusside solution?
A) Urea
B) Thiourea
C) Benzoic acid
D) Aniline
(ii) Which compound does not give a positive result in the Lassaigne`s test for nitrogen?
A) Aniline
B) Glycerin
C) Benzamide
D) Urea
(iii) Which compound gives violet colour with neutral ferric chloride solution?
A) Acetic acid
B) Methylamine
C) Monohydroxybenzene
D) Ethyl alcohol
3. (i) Correct IUPAC name of the following molecule is

A) $(1 R, 2 R)$-Propanediol
B) (R)-1,2-Propanediol
C) $(1 S, 2 S)$-Propanediol
(ii) Among the following molecules, the compound having most acidic hydrogen is

(i)

(ii)

(iii)
$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$
(iv)
A) (i)
B) (ii)
C) (iii)
(iii) What is Lucas reagent?
A) A solution of sodium carbonate, sodium citrate and copper (II) sulphâte
B) ZnCl_{2} in Conc. HCl
C) 2,4-Dinitrophenyl hydrazime
4. (i) Which statement is correct regarding inductive effect?
A) Inductive effect operates only in saturated compounds containing at least one polar sigma bond while electromeric effect occurs in unsaturated compounds containing at least one double or a triple bond which máy or may not be polar in nature.
B) Inductive effect is a permanent effect and involves the mere displacement of sigma electrons while electromeric effect is a temporary one and involves the cleavage of a mutiple bond with complete transfer of a shared pair of electrons to one of the bonded atoms.
C) Inductive effect does not require any outside attacking reagent forits operation while electromeric effect takes place only in the presence of an attacking reagent.
D) Above All
(ii) The following arrow indicates

Equilibrium
C) Inductive effect
D) Reversible reaction
(iii) A sample of pure (S)-2-butanol was placed in a 5.0 cm polarimeter tube. Using the D line of a sodium lamp, the observed rotation at $20^{\circ} \mathrm{C}$ was $\alpha=+\gamma 4^{\circ}$. The density of this compound is $0.312 \mathrm{~g} \mathrm{ml}^{-1}$. What is the specific rotation of (S)-2-butanol?
$\begin{array}{llll}\text { A) }+104^{\circ} & \text { B) }+208^{\circ} & \text { C) }+666^{\circ} & \text { D) }+333^{\circ}\end{array}$
5. Addition of sodiumcyanide to acetone (finall quencl the reaction with dil. HCl) gives two structures \mathbf{C} and \mathbf{D} due to attack of cyanide on front or back face of the acetone molecule
(a) Draw the structures of \mathbf{C} and $\mathbf{D} \quad$ (b) Give the stereochemical relationship between \mathbf{C} and \mathbf{D}
6. (i) In the organic chemistry lab two test tubes are labeled as maleic acid and fumaric acid. What would be your observation while adding Br_{2} in CCl_{4} to the test tubes ontaining maleic acid and fumaric acid?
A) Both maleic acid and fumaric acid can decolorizes bromine solution.
B) Maleic acid decolorizes bromine solution, whereas fumaric acid cannot.
C) Fumaric açd́d decolorizes bromine solution whereas Maleic acid cannot.
D) Both maleic acid and fumaric acid cannot decolorizes bromine solution.
(ii) The rate of $\mathrm{S}_{\mathrm{N}} 2$ reaction depends upon the concentration of
A) Alkyl halide only
B) Base only
C) Both alkyl halide and base
D) None of the reactants
(iii) The following reaction is an example of \qquad
$\mathrm{R}_{\mathrm{A}}^{\mathrm{O}} \mathrm{R}+\mathrm{HCN} \longrightarrow{ }_{\mathrm{R}}^{\mathrm{HO}} \mathrm{C}_{\mathrm{R}}^{\mathrm{CN}}$
A) Substitution
B) rearrangement
C) elimination
D) addition

PART B
(Q7 to Q13: Attempt any SIX questions; Each Question carries 5 marks)
7. (i) The following equation is an example of

A) Inductive effect
B) Electromeric effect
C) Mesomeric effect
D) Hyperconjugation
(ii) The reactive intermediate involved in the following reaction is

A) Radical
B) Carbocation
C) Carbanion
D) Benzyne
(iii) Which of the following acid is more acidic? Justify your answer.

B)

(iv) The following reaction is known as

A) Fries rearrangement
B) Hofmann rearrangement
C) Curtius rearrangement

(v) Compound $\mathrm{X}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)$ forms a phenylhydrazone and gives negative results for iodoformatest. Then thecompgand ' X ' is
A)

B)
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OH}$
C)

D)
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CHO}$
8. (i) What is the expected observed rotation of a $1.0 \times 10^{-4} \mathrm{M}$ methanol solution of the potent anticance drug Taxol? Specific rotation of this material: $[\alpha]^{\mathrm{D}}{ }_{20}=-50.0^{\circ}$ and the solution placed in a $10-\mathrm{cm}$-long Polarimeter cell. Taxoly has a molecular weight of 853.93 $\mathrm{g} /$ mole.
(ii) Assign R / S configuration for the following compounds.

(a) $\mathrm{OHC}^{\mathrm{HO}_{2} \mathrm{C} \ldots(\mathrm{H}}$
(b)

(c)

9. (i) Arrange the following nitrogen containing compounds in decreasing order of basicity.
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
(b) $\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{N}$
(ii) Draw the structures for the following.

A) (S)-lactic acid \quad B) cis 4-t-butyl-cyclohexanol \longrightarrow C) (2E)-2-butenedioic acid
(ii) Predict the product \mathbf{A} in the following reaction.

10. Enantiomers could not possible to separate by using nowmal separating techniques such as silica gel column chromatography. However, for example using (R, R)- $(+)$-Tartaric acid as a resolving agent we could able to resolve (R)-2-butanol and (S)-2-butanol from its racemic mixture. Give all the reactions involved in this resolution process.
11. (i) Identify the product A and propose a suitable mechanism for the following reaction.

(ii) Which $S_{N} 1$ reaction of each pairwould you expect to take place more rapidly?

A) Reaction 1 B) Reaction 2 C) Reaction 1 and 2 takes place with same rate D) None of the above
(iii) The final product obtained/n the following reaction is X . What is X ?

A)

B)

C)

D)

(iv) Identify the correct statements from the following.
(i) In E2 reaction compound containing protium (H) reacts seven times as fast as the compound containing deuterium (D).
(ii) E1 elimination reaction proceeds in two steps.
(iii) Reactivity of R-X toward E2 reaction is $3^{\circ}>2^{\circ}>1^{\circ}$
(iv) In dehydrohalogenation the preferred product is the alkene that has the less number of alkyl groups.
A) i, iii
B) iii, ii
C) i, ii, iv
D) i, ii, iii
12. (i) What type of compounds responds to biuret test?
A) Aliphatic diamide
B) Aromatic ketone
C) Aromatic diamide
D) Aliphatic ketone
(ii) Which one of the following does not give precipitate with ammonical cuprous chloride?
A) $\quad \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$
B)
$\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{CH}$
C) $\quad \mathrm{HC} \equiv \mathrm{CH}$
D) $\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
(iii) Predict the major product obtained from the bromination $\left(\mathrm{Br}_{2}\right.$ in $\mathrm{CCl}_{4} ; 1$ equiv.) of acetylenedicarboxylic acid.
(iv) Identify the product \mathbf{A} in the following reaction.

$$
\mathrm{CN}_{\mathrm{CN}}^{\xrightarrow{\text { 1. } \mathrm{PhMgBr}} \mathrm{~A} \cdot \mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{A}
$$

(v) What kind of species is responsible for the appearance of blue colour in dry THF solvent in the presence of bezophenone and sodium?
13. (i) Write step by step mechanism for the following reaction.

(ii) Propose a suitable mechanism of Wittig reaction with an example.

PART C
(Answer ANY ONE of the following questions, Q14 or Q15)
14. (a) In organic chemistry the curly arrow represents the \qquad (fill in the blank). Andigate the formation of bonds in the following complex using curly arrow. (a) $\mathrm{Et}_{2} \mathrm{OBF}_{3}$ (b) $\mathrm{BF}_{3} \mathrm{Me}_{2} \mathrm{~S}$
(b) Identify the electrophile and nucleophile from the following (a) $\mathrm{R}_{3} \mathrm{~N}$; (b) $\mathrm{R}_{2} \mathrm{~S}$; (d) $\mathrm{AlCl}_{3} /(1.5 \mathrm{M})$
(c) How could you synthesize 1,2-diphenylethyne from 1,2-diphenylethene in two-stepreaction? Propose a step-by-step mechanism.
(3M)
(d) Draw the potential energy diagram of cyclohexane ring flip and explain relative stability and energies of all the major conformers involved in the process. (4M)
(e) An unknown alkene with the formula $\mathrm{C}_{8} \mathrm{H}_{16}$ was found, on oxidation with hot basic permanganate, to yield a threecarbon carboxylic acid (propanoic acid) and a five-carboncarboxylic acid (pentanoic acid). What was the structure of this alkene?
(f) Propose a method to synthesize but-1-ype from aeetylene.
15. (a) Draw the structures for the following. (a) (2S,3R)-3-brono-2-butanol; (b) (4S,3S)-4-hydroxy-3-iodo-pentanoicacid
(b) Write the mechanism indicating all the stepsclearly fo the following transformation.
(3M)

CENTRAL UNIVERSITY OF RAJASTHAN
 Department of Chemistry

M.Sc. / Int. M.Sc.Chemistry; Semester III/ IX

End of Semester Examination; Date: 06/12/2019
Time: 3 hr CHM-622: Natural Products - Biosynthesis and Advances in Total Synthesis
Max. Marks: 60

PART-A (Attempt Q1)

1. Attempt the following:
(a) Which compound confers to 'For its molecular size it is the most complex substance known' as by mentioned Sir Robert Robinson?
(b) Pelletier and Caventou reported the isolation of Strychnine in the year- \qquad
(c) Taxol inhibits cell division by inhibition of microtubule formation. (True/False)
(d) Taxol is isolated from plant
(e) Name the botanist involved in collection of plants as part of NCI program that led to discoyery of Taxol.

PART-B (Q2 to Q5: Attempt any THREE questions. Each Question carries 5 marks.)
2. Write the Retrosynthetic analysis of Strychnine.
3. Write the synthesis for given aldehyde as delineated in Nicolaou's approach. Discyss the key reaction mechanisms and stereochemistry obtained at appropriate steps.

4. (a) Write the structure of Taxol with defined stereochemistry. Give key sunthons required for the assembly of Taxol in Nicolaou's approach. (2.5 M)
(b) Write a short note on history of Taxol and comment on its biological activity. (2.5 M)
5. Complete the given synthetic scheme. Discuss the key reaction mechanisms and stereochemistry obtained at appropriate steps in this Woodward's approach toward Strychnine.

PART-C (Q6 to Q15: Attempt any EIGHT questions.Each Question carries 5 marks.)
6. Discuss the De novo purine biosynthesis of jhosinate (MP). (5 M)

7. (i) Find out the structure of $\mathbf{A} \& \mathbf{B}$ show in the below scheme. (3 M)

(ii) A phosplorylation followed by displacement reaction has been depicted below. Identify the compounds \mathbf{C} \& \mathbf{D}. (2 M)

8. Outline the biosynthesis of monoterpenes limonene and α-pinene by mevalonic acid-isopentylpyrophosphate pathway. Chemical structures of limonene and α-pinene are shown here for your reference. (5 M)

limonene

9. (i) Identify the product formed in the aminotransferase reaction shown in eq-1 with emphasizing reaction mechanism.

(ii) Provide the retrosynthetic analysis and synthetic plan for the target molecule \mathbf{A}.

A
10. (i) Resveratrole (shown below) is a compound in red grape skins that has been suggested as one of the compounds in/red wine that protects against heart disease. How do plants synthesize resveratrole? Explain with mechanisms. (3 M)

(ii) Outline the biosynthesis of Orsellinic acid. (Hint: start from Acetyl-CoA and Malonyl-CoA).

11. The following molecules $(1,2 \& 3)$ could be accessed from single starting precursor dibenzothiophene. Identify the suitable coupling partners and propose a mechanism for the N -arylcarbazole (1) synthesis

12. Write the structures of the products missing in the following transformations. (5M)

(ii)

13. Outline the appropriate retrosynthetic analysis and synthetic strategy to the following target materials $(\mathbf{A} \& \mathbf{B})$. (3 + 2)

14. (i) Among cis \& trans-1,2-dimethyl cyclohexane, which one could be resolvable at room temperature? Justify your answer. (2M)
(ii) Draw most stable conformation of 1,3-dihydroxy cyclohexane, 1,2-dichloro cyclohexane, and ((1S,3R)-1-(tert-butyl)-3methylcyclohexane.
\& trans-4-(tert-butyl)cyclohexanol in the presence of CrO_{3}. Find the reason for it.(2.5 M)
15. (i) Compare the rate oxidation of cis \& trans-4-(tert-butyl)cyclohexanol in the presence of CrO_{3}. Find the reason for it.(2.5
(ii) In compounds shown below, the rate of saponification reaction is faster with compound \mathbf{B} then for compound \mathbf{A}. Why?

16. (i) Define the Curtin-Hammett principle. Prove it with an example of methylation of 8-methyl-8-azabicyclo[3.2.1]octane. (3M)
(ii) What is anomeric effect? Explain with an example. (2M)
17. (i) Write the structure of major stereoisomer that is obtained from the reaction shown below with the help of Cram`s model. (sketch the appropriate Cram`s model). (2 M)

(ii) Identify the major products $\mathbf{A} \& \mathbf{B}$ with emphasizing the stereochemistry using prelog`s model. (sketch the appropriate Prelog`s model). (3M)

18. (i) Illustrate the following with a suitable example.
(a) Pseudo asymmetric centre
(b) Molecule having an achirotopic point but stereogenic.
(c) Topicity of faces
(ii) What is the topic relation between $\mathrm{Ha} \& \mathrm{Hb}$ shown in the compound \mathbf{A}. Predict the multiplicity of peaks that may be observed for $\mathrm{Ha} \& \mathrm{Hb}$ in ${ }^{1} \mathrm{H}$ NMR.

19. (i) Write a short note on the stereochemistry of ansa compounds and biphenyls with a suitable example. (3M)
(ii) Amines undergo rapid inter conversion whereas phosphorous compounds do nat and enantiomers of phosphorous compounds could be isolable. Explain the reasons behind it. (2 M)
20. (i) What is the topic relation between $\mathrm{Ha} \& \mathrm{Hb}$? On the basis of ${ }^{1} \mathrm{H}$ NMR data provided below identify the approximate chemical shift value of $\mathrm{Ha} \& \mathrm{Hb}$. (2M)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.50(\mathrm{~m}, \mathrm{y}$ $3 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.26(\mathrm{~m}, ~ 山 \mathrm{H}), 6.24$ (s, 1H), 6.13 (dd, $J=5.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=8.4,17.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.65 (dd, $J=5.2,17.6 \mathrm{~Hz}, 1 \mathrm{H})$

(ii) Highly substituted carbon skeletons could not be accessible, by norma $\mathrm{S}_{\mathrm{N}_{2}}$ process but it can be obtained by $\mathrm{S}_{\mathrm{RN}} 1$ reactions. Propose a mechanism for the following $\mathrm{S}_{\mathrm{RN}} 1$ reaction.

21. (i)Deduce the mechanism for the following thansformation (considerng stereochemical aspects). (2M)

(ii) Identify the products \mathbf{A}, \mathbf{B}, and \mathbf{C} that are obtained in the following reactions and also emphasize on mechanism and stereochemistry of product formation. (3M)

22. (i) Isotopes can also be used to solve meehanistic problems that are non-kinetic. The following is an example. Deduce a suitable reaction mechanism for a reaction shown betow. (3M)

(ii) Derive the fate equation for the following general reaction on the basis of steady-state approximation. (2M)

23. (i) Menthyl chloride and neomenthyl chloride undergo E2 elimination to provide the corresponding olefins. Identify all the possible olefins by clearly showing mechanism (chair conformation). (2M)

(ii) Draw the Hammett plots and suggest the suitable mechanism for the reactions shown below on the basis of given data. (ρ values should be correlated to the mechanism). (3M)

$$
\begin{aligned}
& \mathrm{X}=\text { ERG; } \rho=-4.4 \\
& \mathrm{X}=\text { EWG; } \rho=2.5
\end{aligned}
$$

24. (i) What are Hammond postulate? Sketch the potential energy diagram of exothermic and endothermic reactions. (2M)
(ii) Reaction of O^{18} labelled deuterated propargyl alcohol \mathbf{A} with SOCl_{2} provided the α, β-unsaturated carbonyl compound \mathbf{B} in which O^{18} labelled oxygen has not been incorporated while deuterium is incorporated. Keeping these observations, propose a mechanism for the reaction shown below. (Hint: [3,3] sigma tropic rearrangement). (3M)

25. (i) Identify the major product \mathbf{A} and \mathbf{B} obtained from the following transfomatron by clearly lindicating transition states/intermediates. (2M)

(ii) What is vicarious nucleophilic substitution reaction? Identify the product A oreaction shown below and propose a step by step mechanism. (3M)

CENTRAL UNIVERSITY OF RAJASTHAN

Department of Chemistry

MiSc. / Int. M.Sc. B.Ed./ Int. M.Sc.Chemistry; Semester I/ VII
End of Semester Examination; Date: 04/12/2019
Stereochemistry and Reaction Mechanism

CHM-402
Max. Marks: 60
PART A (Q1 to Q15: All questions are compulsory. Each Question carries 1 mark)

1. The number of stereogenic centres in the following molecule is. \qquad
2. The C-2 carbon in the following molecule is achirotopic and non-stereogenic. (True / False)

3. The maximum number of stereoisomer that are possible to be obtained by NaBH_{4}-mediated reduction of both the carbonyl groups in the following molecule is \qquad

4. The absolute configuration of the following molecule is.

5. The pro-R hydrogen in the following molecule are

a) H_{a} and H_{b}
b) H_{a} and H_{c}
c) H_{b} and H_{d}
d) H_{b} and H_{c}
6. During reduction with NaBH_{4}, the addition of hare from the $r e$ face of the molecule shown below gives rise to r-alcohol.

7. In the preferred conformation of \mathbf{P}

a) Both the methyl groups are equatorial
b) Only one methyl group equatorial
d) Both the methyl groups are axial
8. The number of extra gauche butane interactions in the following molecule as compared to two cyclohexane chair forms is

a) 2×3
c) 4
d) 7
9. If. \qquad . contribution is zero thar Yukawa-Tsuno equation is equal to Hammett equation!
10. Hammett studied \qquad deprotonation as the standard reaction to calculate substituent constant (σ).
11. The reaction shown below for conversion of compound \mathbf{C} to compound \mathbf{D} can be classified as

b) E2 elimination reaction
c) E1CB elimination reaction
12. Based on Hammond postulate, a highly exothermic reaction will have. \qquad ..transition state.
13. Write the structure of more stable product obtained from the reaction of PhCHO with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)$ under hv condition.
14. Provide an example for chiral spirane.
15. The energy difference between the preferred conformations of cis \& trans-1,2-dimethylcyclohexane is
a) $2.7 \mathrm{kcal} / \mathrm{mol}$
b) $1.8 \mathrm{kcal} / \mathrm{mol}$
c) $3.6 \mathrm{kcal} / \mathrm{mol}$
16. (i) Among cis \& trans-1,2-dimethyl cyclohexane, which one could be resolvable at room temperature? Justify your answer. (2M)
(ii) Draw most stable conformation of 1,3-dihydroxy cyclohexane, 1,2-dichloro cyclohexane, and ((1S,3R)-1-(tert-butyl)-3methylcyclohexane. (3M)
17. (i) Compare the rate of oxidation of cis \& trans-4-(tert-butyl)cyclohexanol in the presence of CrO_{3}. Find the reason for it.(2.5 M)
(ii) In compounds shown below, the rate of saponification reaction is faster with compound \mathbf{A} then for compound \mathbf{B}. Why?

18. (i) Define the Curtin-Hammett principle. Prove it with an example of methylation of 8-methyl-8-azabicyclo[3.2.1]octane. (3M)
(ii) What is anomeric effect? Explain with an example. (2M)
19. (i) Write the structure of major stereoisomer that is obtained from the reaction shown below with the help of Cram's model. (sketch the appropriate Cram`s model). (2M) (ii) Identify the major products \(\mathbf{A} \& \mathbf{B}\) with emphasizing the stereochemistry using prelog s model. (sketch theappropyate Prelog`s model). (3M)

20. (i) Illustrate the following with a suitable example.
(d) Pseudo asymmetric centre
(e) Molecule having an achirotopic point but stereogenic.
(f) Topicity of faces
(ii) What is the topic relation between $\mathrm{Ha} \& \mathrm{Hb}$ shown in the compound A. Predict themuttiplicity of peaks that may be observed for $\mathrm{Ha} \& \mathrm{Hb}$ in ${ }^{1} \mathrm{H}$ NMR.

(2M)
21. (i) Write a short note on the stereochemistry of ansa compounds and biphenyls with a suitable example. (3M)
(ii) Amines undergo rapid inter conversion whereas phosphorous compounds do not and enantiomers of phosphorous compounds could be isolable. Explain the reasons behind (1). (2M)
22. (i) What is the topic relation between Ha \& Hb? On the basis of NMR data provided below, identify the approximate chemical shift value of $\mathrm{Ha} \& \mathrm{Hb}$. (2M)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $8.98(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7150(\mathrm{~m}$, $3 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.24$ (s, 1H), 6.13 (dd, $J=5.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=8.4,17.6 \mathrm{~Hz}, 1 \mathrm{H})$,

3.65 (dd, $J=5.2,17.6$ d
(ii) Highly substituted

Propose a mechanism for the following $\mathrm{S}_{\mathrm{RN}} 1 \mathrm{refaction}$. (3 M)

23. (i)Deduce the mechanism for the following transformation (considering stereochemical aspects). (2M)

(ii) Identify the products \mathbf{A}, \mathbf{B}, and \mathbf{C} that are obtained in the following reactions and also emphasize on mechanism and stereochemistry of product formation. (3M)

24. (i) Isotopes can also be used to solve mechanistic problems that are non-kinetic. The following is an example. Deduce a suitable reaction mechanism for a reaction shown below. (3M)

(ii) Derive the rate equation for the following general reaction on the basis of steady-state approximation.

25. (i) Menthyl chloride and neomenthyl chloride undergo E2 elimination to provide the corresponding qlefins. Iafentify all the possible olefins by clearly showing mechanism (chair conformation). (2M)

(ii) Draw the Hammett plots and suggest the suitable mechanism for the reactions shown below on the basis of given data. (ρ values should be correlated to the mechanism). (3M)

$$
\begin{aligned}
& X=E R G ; \rho=-4.4 \\
& X=E W G ; \rho=2.5
\end{aligned}
$$

26. (i) What are Hammond postulate? Sketch the potential energy diagram of exothermic and endothermic reactions. (2M)
(ii) Reaction of O^{18} labelled deuterated propargyl alcohol \mathbf{A} with SOCl_{2} proyided the α, β-unsaturated carbonyl compound \mathbf{B} in which O^{18} labelled oxygen has not been incorporated while deuterium is incorporated. Keeping these observations, propose a mechanism for the reaction shown below. (Hint. [3,3] sigma tropic rearrangement). (3M)
27. (i) Identify the major p states/intermediates. (2M)

CENTRAL UNIVERSITY OF RAJASTHAN
 DEPARTMENT OF CHEMISTRY

M.Sc. / Int. M.Sc. B.Ed. / Int. M.Sc. Chemistry; Semester III / IX

Session: Jul-Dec 2019
End of Semester Examination
Pericyclic Reactions and Photochemistry
$11^{\text {th }}$ Dec 2019
Time allowed: $\mathbf{3} \mathbf{h}$
Max marks: 60

Answer ANY 12 questions

$(5$ marks $\times 12=60)$

1. (i) Predict the product of the $1^{\text {st }}$ step in the reaction shown below and classify it appropriately. Comment on the concerted nature of the $2^{\text {nd }}$ step, offering a brief justification.
(4)

(ii) Why are nitrones used as spin trapping reagents for the study of free radicals in EPR spectroscopy? Ilfustrate using the example of a reaction between the nitrone shown below and any R^{\bullet} :

2. Identify $\mathbf{P}, \mathbf{Q}, \mathbf{R} \& \mathbf{S}$ in the following transformations:
(i)

(ii)

3. (i) Predict the product (with stereochemistry) for the CON rotatory and DIS rotatory cyclisation of (2E,4Z,6E)-octa-2,4,6triene; which path will be followed for a photochemical reaction?
(ii) What will be the order of reactivity of \mathbf{A}, \mathbf{B} and \mathbf{C} in the Diels-Alder reaction? Justify.

A

C

B

4. (i) Identify the missing intermediate \& product of the reaction given below. Give an appropriate name and outline the mechanism of the reaction.

(ii) When a bottle of benzadebyde is left open in the laboratory, some of it gets oxidised to benzoic acid. Outline a suitable mechánism for this process involving free radicals.
5. Identify the plausible internediates/products which are missing in the reaction sequences depicted below, illustrating mechanisms for the formation and subsequent reactions of the same. Also name the reaction steps wherever appropriate.
(i)

(ii)

6. Account for the following with suitable justification and illustrations:
(i) The extra stabilization offered by adjacent pi-donors is lower for a free radical as compared to a carbocation.
(ii) o-Methyl benzophenone is used in the plastics \& dyes industry to protect light sensitive materials.
7. Propose a suitable mechanism for the following photochemical transformations:

(i)

(ii)

8. Propose a suitable mechanism for the reactions shown below:

Hints: (i) [3+2] cycloaddition; (ii) weak O-N bond; (iii) fagmentation and recombination
9. Identify $\mathbf{Q}, \mathbf{R}, \mathbf{S} \& \mathbf{T}$ in the following transformation. Classify the reactions involved in the conversion of \mathbf{P} to \mathbf{Q} and \mathbf{Q} to \mathbf{S} as specifically as possible.

10. (i) An effective synthetio method for the synthesis of camphor involves heating dihydrocarvone to $400{ }^{\circ} \mathrm{C}$, which undergoes the reaction via the enol form (' \mathbf{E} ' in the scheme given below). Outline a suitable mechanism for this reaction.

11. Outline a detailed mechanism for the reactions shown below:
(i)

(ii)

12. The following transformation takes place by one or more sigmatropic rearrangements. Identify the reactions and predict the stereochemistry of the substituents in the product.

13. Outline a mechanism (Initiation and Propagation steps only) for the reaction given below:

Hint: A free radical can form a bond with the C atom of carbon monoxide when taken as $[\mathbf{O}=\mathbf{C}:]$
14. (i) Outline a plausible mechanism for the transformation shown below

(ii) Elucidate the mechanism of the reaction given below and identify the name of this freaction.

15. The following reaction takes place in 5 steps, with a combination of electrocyclic, cycloaddition and retro-cycloaddition reactions. Identify the steps and show that allye 5 steps obey the Woodward-Hoffmann rules:

CENTRAL UNIVERSITY OF RAJASTHAN
 DEPARTMENT OF CHEMISTRY

End of Semester Examination (Online)
M.Sc. / Int. M.Sc. B.Ed. / Int. M.Sc. Chemistry; Semester III / IX

Time allowed: $\mathbf{3} \mathbf{h r s}$
Max marks: 60

PART A

Answer ANY 5 questions

(3 marks $\times 5=15$)

1. If you were asked to attribute the phenomenon of glow-in-the-dark toys to fluorescente or phosphorescente, which would you pick? Offer a justification based on excited states.
2. (i) Justify why trans-piperylene $\mathbf{1}$ is more reactive in the Diels-Alder reaction than the f is counterpat (ii) How would the reactivity of $\mathbf{1}$ compare with that of cyclopentadiene as a diene for the Diels-Alder feaction? Justify youn answer.

1
3. o-Substituted benzophenone (shown beside) is used as a light trapping source in the dye industry to protect the colours and sensitive materials from getting decomposed by light. Offer a neehanstic explanation for this application. What is the type of reaction involved?
4. Predict the product and illustrate the mechanism for the reaction given below; identify the named reaction.

5. Predict the product (with stereochemistry) for the CON - tatory and DIS rotatory cyclisation of $(2 Z, 4 Z, 6 E)$-octa- $2,4,6$ triene. What can you comment on the reactivity of $(2 Z, 4 E, 6 Z)$-octa-2,4,6-triene for undergoing a similar transformation?
6. Outline the initiation and propagation stees in ine chain mechanism for the reaction shown below:

Answer ANY 3 questions
$(15$ marks $\times 3=45)$
7. (i) A small amount of 4 allylphenol is often obtained during the Claisen rearrangement of allyl phenyl ether. Two different mechanisms involving sigmatropic migrations are possible for this transformation - one is a single step while the other is a 2-step mechanism. Illustrate both the possible mechanisms and determine which is the more likely of the two, with justification.

(ii) The structurally unique natural product Merrilactone A, identified as a potent neurotropic factor, has been synthesized by two separate groups - Danishefsky et al and Frontier et al. Interestingly, both routes involved a key pericyclic reaction as detailed below:
a) Danishefsky's synthesis (Ref. J. Am. Chem. Soc. 2002, 124, 2080) started with the Diels-Alder reaction shown below. You are required to predict the product with the correct regio- and stereochemistry.

b) Frontier's synthesis (Ref. J. Am. Chem. Soc. 2007, 129, 498) involved a Nazatov cyclization, involving the elimination of a silyl group, as shown below. You are required to outline amechanism for the formation of intermediate \mathbf{A} and also predict the stereochemistry of the substituents ' R ' and ' MC '.

(iii) Jayanthi et al synthesized polycyclic β-lactams utilizing the intramolecular radical cyclisation of N-propargyl substituted azetidin-2-ones (Ref.: Synlett 2004, 1249). Depict the structure of the 2 products \mathbf{P} and \mathbf{Q} and name them appropriately.

8. (i) Predict the product \mathbf{A} with the correct stereochemistry in the reaction of \mathbf{P} below, corroborating it with the appropriate Transition State(s) and brief comments.
(ii) Outline the mechanism, for the rearrangement of bicyclic ketone $\mathbf{8}$ to tricyclic ketone 9 . What mechanism/rearrangement (only the name) gives rise to the isomeric ketone 10 upon direct irradiation? (4)

(iii) Based on a similar rearrangement as above, predict the structure of $\mathbf{1 2}$ in the reaction below. What other starting material 13 can be used to get the same product under similar conditions?

9. (i) Predict the product of the reaction shown below, providing a suitable mechanism.

(ii) Propose a suitable mechanism for the following photochemical transformations:

(iii) When a bottle of benzaldehyde is left open in the laboratory, some of it gets oxidised to benzoic acid. Outline a suitable mechanism for this process involving free radicals.
10. (i) Two types of carbocyclic ring formations are involved in the biological action of the drug calicheamicin, leading to the formation of the diradical species that effects a DNA cleavage. Identify both these cyclisations and iliustrate the mechanism, clearly numbering the atoms involved. The first step - generation of a thiolate triggered by a wishas been indicated.
(6)

(ii) Molina and co-workers reported this domino reaction sequence (J. Org. Chem. 1991,56, 4008) for the construction of complex ring systems. Provide a mechanism to account for this/multi-step transformation. Name each of the steps appropriately, including the $1^{\text {st }}$ step of the transformation. The $1^{\text {st }}$ step, which leads to intermediate 20 , has been illustrated.

Hints:

1) Different types of pericyclic reactions are involved.
2) The last step involves a double bond of one of the Ph groups in apericyelic reaction, leading to the formation of ring C and ring D in a single step.

Central University of Rajasthan
 Department: Chemistry
 Course Code: CHM-404
 (Group Theory and Molecular Spectroscopy)
 End of Semester Examination (EOSE)

Total marks: 60
Date: 20-03-2021
Time: 14:00-17:00 hrs.

Part-A

Answer any 5 questions. Each question carries 3 marks
$(5 \times 3=15)$

1. Identify the point group of each of the following:
a) 8
b)

2. Arrange the following molecules categorically in "Abelian", "Non--abelian" and "cyclic" group:
a) cis-dichloroethylene
b) cyclopropanol
c) trans-1,2-dicholorocyclopropane
$(1 \times 3=3)$
3. What kind of rotor of the following molecules
(a) a molecule mainly has $4 \mathrm{C}_{2}, 1 \sigma_{\mathrm{h}}, \mathrm{C}_{4}, 4 \sigma_{v}$ these symmetry elements
(b) a molecule mainly has $\mathrm{C}_{2}, 1 \sigma_{\mathrm{m}}, 2 \sigma_{v}$ these symmetry elements
(c) a molecule mainly has $5 \mathrm{C}_{2}, 1 \sigma_{\mathrm{h}}, 2 \sigma_{v}, 3 \mathrm{C}_{4}$ these symmetry elements
4. What are the point group notation of the sub-groups in D_{3} point group?
5. Arrange the following bonds in descending order based on the vibrational frequency and justify your answer.
a) $\mathrm{C}-\mathrm{C}$
b) C-F
c) $\mathrm{O}-\mathrm{F}$
d) $\mathrm{P}-\mathrm{Cl}$
$(1 \times 3=3)$
6. Define the mutual exclusion principle. Among the following molecules which will satisfy this rule
a) acetylene b) sulphur dioxide c) cyclobutane d) benzene

Part-B
Answer any 3 questions. Each question carries 15 marks
7. (a) Construct the character table for a pyridine molecule and find out the number of IR vibrational, Microwave rotational mode and corresponding irreducible representation for the same.
(b) Identify the Mullikan notation for the following irreducible representation

E	Cn	nC_{2}	i	σ_{h}
1	l	-1	-1	-1

8. (a). The internuclear distance of $\mathrm{a}^{12} \mathrm{C}^{16} \mathrm{O}$ molecule is $1.13 \mathrm{~A}^{0}$. Calculate the angular velocity of this molecule in the first excited rotational level and find out the energy in erg (unit) for the transition $\mathrm{J}-4$ to $\mathrm{J}-5$.
(b). What is the relation among three different moment of inertias $\left(I_{s}, I_{b} \& I_{c}\right)$ of the following molecules?
a) PCl_{5}
b) HNC
c) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
d) sulfur chloride pentafluoride
$(1 \times 4=4)$
(c). If the reduced mass of a diatomic molecule is doubled without changing the force constant, then what happen to frequency.
9.(a). HCl show instance absorption at $2886 \mathrm{~cm}^{-1}$, a weaker one at $5668 \mathrm{~cm}^{-1}$ and very weak at $8347 \mathrm{~cm}^{-1}$. Calculate the percentage of decrease of oscillation frequency of harmonic oscillator with respect to anharmonic oscillator at the first excited vibrational energy state.
(b).

The above ro-vibrational spectra obtained for a molecule. What could be the possibilities of shape of this molecule? Justify your answer.
(c). Let assume you have a molecule which exhibit three characteristic vibrations at the wavenumbers $2200 \mathrm{~cm}^{-}$ ${ }^{1}, 1180 \mathrm{~cm}^{-1}$ and $585 \mathrm{~cm}^{-1}$. However, in the experimental result it was obtained three peaks appear around $1195 \mathrm{~cm}^{-}$
${ }^{1}, 1155 \mathrm{~cm}^{-1}$ and $2200 \mathrm{~cm}^{-1}$. Why the instrument is not giving the peaks at their respective position.
10.(a). A $20491 \mathrm{~cm}^{-1}$ Laser light was used to excite ${ }^{16} \mathrm{O}={ }^{16} \mathrm{O}$ molecule to obtain Rotational Raman Spectra of O_{2} has $1^{\text {st }}$ Stoke line at $20479 \mathrm{~cm}^{-1}$. Find the bond length of the ${ }^{16} \mathrm{O}={ }^{16} \mathrm{O}$ molecule and next rotational stoke line position
$(3+3=6)$
(b). Which type of vibrational spectroscopy technique (IR or Raman or both) would you use to measure the vibrational frequency of the following bonds:
a) The $\mathrm{C}=\mathrm{C}$ symmetric stretching and bending for trans-1,2-dicholoroethene molecule
b) The $\mathrm{C}=\mathrm{O}$ stretch in CO
(c). Draw the different polarizable ellipsoid structures for various mode for vibration of a SO_{2} molecule.

Central University of Rajasthan
 Department: Chemistry
 Course Code: CHT-305 and ICHT-905:
 (Solid State, Surface and Material Chemistry)
 End of Semester Examination (EoSE)

Total marks: 60

Date: 20-01-2021
Time: 10:00-13:00 hrs.

Part-A
Answer any 5 questions. Each question carries 3 marks $\quad(5 \times 3=15)$

1. What are the fundamental difference among "Crystal", "Amorphous" and "Quasicrystal".
2. Draw the Stereogram of the given point group (222), (mm2), (mmm) individually.
3. What is the effect of increasing temperature on an anti-ferro magnetic material? What is the main difference between soft and hard magnet?
4. What is Quantum dots? For a particular Quantum dot system, the emission peak appears at 550,600 and 650 mm for three different sizes of quantum dots. Arrange this quantum dot's size based on their emission peak.
5. How the temperature will vary with pressure for a specific adsorption process
6. Calculate how long a hydrogen atom will remain on the surface of a solid at 298 K if its desorption energy is:
(a) $15 \mathrm{KJ} \mathrm{mol}-1$ (b) 150 KJ mol- 1 . Assume that $\tau_{0}=0.1 \mathrm{ps}$.

Part-B

Answer any 3 questions. Each question carries 15 marks
7.(a). What is the intrinsic and extrinsic semiconductor? Graphically represent how the temperature effect can lead to transform from intrinsic to extrinsic semiconductor. Why "exhaustion"range is so much important for device fabrication.
(b). Let's assume you have a sample of TiO_{2} nanotube on a glass sufface. What kind of instruments you would use to determine surface roughness, morphology, and structure separately? Justify your answer.
8.(a). Assuming a crystal structure having three- 2 fold, two- 4 fold, five- 2 fold rotational axes, 8 m , six4 rotoinversion and eight- 6 rotoinversion symmetries, Calculate the order of the point group.
(b). Identify the "Schonflies" notation from the given "Hermann-Mauguin" notation: i) 4/m, ii) 42 m, iii) $4 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$, iv) 222 v) 4 mm vi) mm 2
(c). Find out the symbol of the "SPACE GROUP", considering the following information respectively
i) primitive unit cell contains one 21 screw axis and point group notation is $2 / \mathrm{m}$.
ii) body centered unit cell contains one 4_{3} and one 2_{1} screw axis and point group notation is 422 .
iii) face centered unit cell contains one diagonal glide plane, one glide plane along "a" axis and point group notation is mm 2 .
9.(a). Explain about the concept of "DOMAIN" in ferro/ferri magnetic material. Explain the nature of the hysteresis of the plot magnetic flux density vs. magnetic field strength.
(b). What do you mean by "PLANER DEFECT" and "BULK DEFECT"
(c). Find out the "SHORT FORM" of "Hermann-Mauguin" notation of the given "Space group" notation and mention the meaning of each symbol in the respective space group.
i) $141 / \mathrm{acd}$
ii) Fd3
iii) P2/c
iv) Cc
v) $\mathrm{I} 2,3$
10.(a). Briefly explain about the working principle of i) SEM (Scanning Electron Microscope), ii) TEM (Tumneling Electron Microscope) and iii) AFM (Atomic Force Microscope)
(b). Define "Anti-ferroelectricity", "Pyroelectricity", "Piezoelectricity".
(c). At $0^{\circ} \mathrm{C}$ and 1 atm pressure, the volume of N_{2} gas required to cover a sample o silica gel, is found to be $130 \mathrm{~cm}^{3} \mathrm{gm}^{-1}$. Calculate the surface area per gram of silica gel. (Area occupied by N_{2} molecule is $\left.0162(\mathrm{~nm})^{2}\right)$

Department of Chemistry

M. Sc (Sem. I) \& Int. M. Sc. B. Ed (Sem. I): End of Semester Examination

Part-A Answer any 5 questions out of 6

1. Are the following operators are Hermitian: $i\left(\frac{d}{d x}\right), i\left(\frac{d^{2}}{d x^{2}}\right)$.
2. Explain why each of the following integrals must be zero, where the
3. Prove that the degree of degeneracy of an energy level n a Hydrogen atom is n^{2} ?
4. Which of the following operators meet the requirement. for a quantun-meckanical operator that is to represent a physical quantity: (a) (b) (b)d/dx; (c) d d $d x^{2}$
5. The $J=0$ and $J=1$ transition for carbon monoxide $\left(y^{12} C^{16} O\right)$ ocurs at 1.153×10^{5} MHz . Calculate the bond length in carbon monoxide. No need workout the numerical. Write the working equation, substitute the quantities and bring them into MKS units and leave it.

6. Suppose that at time t' a hydrogen atomisy in a nonstationary state with

7. True or False. Question in bold Mandates an explanation or illustration through an example.
(a) In both classical and quentunamechanics, knowledge of the present state of an isolated system allows its future state to be calculated
(b) Every linear combination of eigenfunctions of the Hamiltonian is an eigenfunction of the Hamiltonian
In the state funetion is not an eigenfunction of the operator A, then a measurement
of the propery A might give a value that is one of the eigenvalues of A
(d) If two Hermitian operators do not commute, then they cannot possess common comprete set
(e) If two Hermitian operators commute, then every eigenfunction of one must be an
(f) The normalized state function Ψ is dimensionless (that is, has no units)
(g) The state function Ψ can never be negative
(h) The value zero is never allowed for an eigenvalue
(i) The wavelength of the particle-in-a-box absorption transition from quantum number n to $n+1$ decreases as the value of the quantum number n increases must be an eigenfunction of the other,
(j) If c is a constant, and if $<c m|\hat{f}| n>=<m|\hat{f}| c n$, then c must be rear
8. (a) Describe the constraints that the Born interpretation puts on the acceptable wave-
function?
(b) Show that the expressions for kinetic energy and potential energy for a harmonic oscillator have the units of energy (joules).
(c) Derive the expression for Schrodinger equationyof simple Hammonic oscillator? What are the approximations were made jrsolving the Schrotinger equation? Obtain the wavefunction of first exited stat from the recursion relations and obtain the normalization constant?
9. For He^{+}cation, answer the linked questions
(a) Write the Hamiltonian for interval motion in hyperspherical coordinates
(b) Write the eigen functions and energies for two lowest levels
(c) Is $\Psi_{t}=e^{-\alpha r^{2}}$ a valid function for the ground state wavefunction? Explain
(d) The parameter α in the above quegtibn con be obtained by Variational theory. First set $l=0$ in the Hamilonian. Eyaluatd

(e) Find the α at which 1 is minimum. Then $\Psi_{t}=e^{-\alpha r^{2}}$ will be a solution to the
10. In molecular spectroscopy, the nuclear motion (particularly vibrations) of a diatom is modelled by solving nuclear Schrödinger equation. The answer the following liked questons
(a) Write the generalized Hamiltonian for a diatom?
(b) Born-Öppenheimer approximation allow you to replace ald electronic terms and nuclear repulsion terms with intermolecular potential energy surface. One such surface is Morse potential.
where D and β are constants.
Write the resultant Hamiltonian after replacing all electronic terns and nuclear repulsion terms with Morse potential.
(c) The separation of translational and internal degree freedom was taught to you in the class. Apply the analogy here and separate trapstational and internal degree of freedom. Just be very brief, efull deriv ration is no needed. Show the frame of reference, center of mass etc.
(d) Expand $e^{-\beta x}$ in power series round x and show that the Hamiltonian operator for the nuclear motion is

$$
V(x)=D\left[1-e^{-\beta x}\right)^{2}
$$

$$
\begin{equation*}
\hat{H}^{2}=\frac{\hbar^{2}}{2^{2} \mu} \frac{d^{2}}{d x^{2}}+a x^{2} b x^{3}+c x^{4}+\ldots \tag{1}
\end{equation*}
$$

Where a, b and c are constants. Give the expression for the constants a, b and c in
terms of D and β.
(e) What is the ground state Ψ_{0} and ivy energy E_{0} for the Hamiltonian

$$
\boldsymbol{X}=\frac{-\hbar^{2}}{2 \mu} \frac{d^{2}}{d x^{2}}+a x^{2}
$$

Part-A Answer any 5 questions out of $6 \quad$ Max. Marks: 15

1. 100 Liters of ideal gas allowed to expand isothermally against constant pressure of 1 atho until its volume becomes doubled. Calculate the work done w, het energy q and change in enthalpy ΔH ?
2. The Joule-Thomson coefficient of a gas can be expressed

$$
\mu_{J T}=-\left(\frac{1}{C_{p}}\right)\left(\frac{\partial H}{\partial P}\right)_{T}
$$

At 3000 C in the pressure range 0 to 60 atm , the Joute-Dhomson cocfficient of N_{2} can be represented by the equation, $\left.\mu_{J T}=[0.0142-2.60 \times 10)^{-4} \mathrm{P}\right] \mathrm{K}$ and Galculate H when ten moles of N_{2}, a van der Waals gas expand isothermallyat 3000 from 45 atm to 40 atm. Given $C_{p}=7 / 2 R$
3. Explain how the internal energy and entropy depends on temperature?
4. What are exact and inexact differentials? What is theirsignificance in Thermodynamics ?

5. Derive the expression for the eficiency of a seversible Carnot heat engine?
6. What happens to the tenperatare (increasedecreases or unchanged) during an adiabatic expansion and give reason?
Part-B

Max. Marks: 45

1. (a) The ST ynits of parameters anand b of the equation of state of a gas $P=\frac{R T e \frac{-a}{R T V_{m}}}{V_{m}-b}$ are?
(b) The critical constant of ethane are $P_{c}=28.40 \mathrm{~atm}, V_{c}=218 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$, and $T_{c}=$
155.4 K . Calculate the arameters \mathbf{a} and \mathbf{b} of the equation of state $P=\frac{R T e^{\frac{-a}{R T V_{m}}}}{V_{m}-b}$?
(c) A real gas behaves as a perfect gas when?
A. Temperat ure appryaches zero
B. Presure approaches zero
C. Both temperature and pressure approaches zero
D. None of the above
(d) If the state function of a gas is given by $P=\frac{R T}{V_{m}-b}-\frac{a}{T V_{m}^{2}}$ then calculate thermodynamical properties (a) isothermal reversible work done, (b) change in enthalpy, (c) change in entropy and (d) the internal pressure $\pi_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P$.
2. (a) An ideal gas in an initial state $\left(P_{1}, V_{1}, T_{1}\right)$ converted into filatstate $\left(P_{2}, V_{2}\right.$, \boldsymbol{T}_{1} through isothermal reversible process (Path A). The final state canalso be achieved by (i)Path B: reversible process at constant volume to form intermediate state $\left(P_{2}, V_{1}, T_{2}\right)$ and (ii)Path C: conversion of the intermediate tate $\left(P_{2}, V_{1}, T_{3}\right)$ mono the final state through another reversible process at constant pressure Please see the figure given below. Calculate the $q, w, \Delta U$ and ΔS for the paths A and $+\mathrm{C}+$?

(b) How is the entropy calculated experimentally?
3. (a) Derive the expressions for work done in reversible and irreversible expansion of an ideal gas. Ia which process, more work/ can be realized. Give your reasoning?
(b) The molar heat capacity of a substance is represented in the temperature range 298 K to 400 K by the empirical relation $C_{p, m}=(14+b T) \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$, where b is a constant. The molar enthalpy change when the substance is heated from 300 K to 350 K is $2 \mathrm{k} \mathrm{f}^{5} \mathrm{~mol}^{-1}$. Calculate the value of b unto two decimal places.
(c) The molar enthalpy N vaporization of benzene at its normal boiling point $\left(80.09^{\circ} \mathrm{C}\right)$ is $30.72 \mathrm{kJ}. \mathrm{~mol}^{-1}$ Assuming that $\Delta_{\text {vap }} \bar{H}$ and $\Delta_{\text {vap }} \bar{S}$ stay constant at their values at $89.09^{\circ} \mathrm{C}$, calculate the value of $\Delta_{\text {vap }} \bar{G}$ at $75.0^{\circ} \mathrm{C}, 80.09^{\circ} \mathrm{C}$ and $85.0^{\circ} \mathrm{C}$. Interpret these results physically,
4. (a) Discus/ changes in the thermodynamical parameters such as chemical potential, enthalpy, entropy and heat capacity with Temperature in first order phase transitions.
(b) An ideal gas subjected to Joule-Thomson cooling. What will be the outcome, Explain?
(c) Calculate the residual entropy of carbon monoxide and nitrogen monoxide at near absolute temperatures? Explain the differences observed in both the systems.
(d) The enthalpy of vaporization of a liquid at its boiling point $\left(T_{b}=200 \mathrm{~K}\right)$ is 15.3 kJ mol^{-1}. If the molar volumes of the liquid and the vapor at 200 K are 110 and 12000 $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$ respectively, then calculate the slope of the liquid two decimal places. (Note: $1 \mathrm{~Pa}=1 \mathrm{Jm}^{-3}$)
