Department of Statistics Central University of Rajasthan

SYLLABUS

for

Integrated M. Sc. STATISTICS

Proposed to be implemented for the existing 2015 batch and batches admitted in academic year 2016 onwards and for students admitted in academic year 2019 and onwards

Department of Statistics
School of Mathematics Statistics and Computational Sciences
Central University of Rajasthan
Bandarsindri, NH-8, Kishangarh, Ajmer, Rajasthan-305801

Programme Objective:

The main objective of Integrated M.Sc. in Statistics programme in CURaj is to facilitate higher secondary passed students to learn, practice and make career in the art of information analysis for the purpose of decision making on concerned problems. Analysis can be done by using well accepted principle and scientific methods developed in Statistics. As these students have chosen the statistics at an early stage of their learning, they have an opportunity of better understanding fundamentals of statistics and equip themselves to work as a professional statistician. Training in statistical computing will enhance their job opportunities and professional skills.

Learning outcome of this program,

After the completion of Integrated M.Sc. programme, students will:

1. Learn the art of representing and dealing with random phenomenon
2. Learn basic principles and statistical concepts used in decision making
3. Learn art of gathering information by sampling and designing experiments and analyzing it
4. Be able to assist researchers for drawing inferences using their experimental out comes
5. Be able to develop and validate models on the basis of collected data

Revised Course Outline

Integrated M.Sc. Statistics

I to VI Semester

Sem.	Revised Code	Title	Credit	Hours		
				Lectures	Tutorial	Practical
1	STA 101	Descriptive Statistics	3	3	0	0
	STA 102	Practicals $\square \square \square$	1	0	0	2
II	STA 103	Probability and Random Variables	3	3	0	0
	STA 104	Practicals	1	0	0	2
III	STA 201	Probability Distributions	3	3	0	0
	STA 202	Practicals	1	0	0	2
IV	STA 203	Statistical Inference-I	3	3	0	0
	STA 204	Practicals	1	0	0	2
V	STA 301	Sample Survey	3	3	0	0
	STA 302	Applied Statistics	3	0	0	0
	STA 303	Theory of Attributes and Design of Experiments	3	0	0	0
	STA 304	Practicals	3 n	0	0	6
	\cdots	Open Elective (Science)	3	3	0	0
	¢	Open Elective (Social Science)	3	3	0	0
VI	STA 305	Operation Research	3	0	0	0
	STA306	Reliability and Survival Analysis	3	3	0	0
	STA 307	Statistical Inference -II	3	3	0	0
	STA 308	Practicals	3	0	0	6
		Open Elective (Science)	3	3	0	0
		Open Elective (Social Science)	3	3	0	0

VII Semester

Course Code	Title		Credit	Hours per week		
			4	3	1	0
STA 401	Probability Theory	4	3	1	0	
STA 402	Distribution Theory	4	3	1	0	
STA 403	Real Analysis and Linear Algebra	4	3	1	0	
STA 404	Sampling Theory	4	0	0	8	
STA 405	Practicals					

VIII Semester

Course Code	Title	Credit		Hours per week		
			4	3	1	

IX Semester

Course Code	Title	Credit		Hours per week		
			4	3	1	
STA 501	Time Series Analysis \& Forecasting	4	3	1	0	
STA 502	Multivariate Analysis	4	3	1	0	
	Elective - 1	4	3	1	0	
	Elective - 2	4	0	0	8	
	STA 503					

X Semester

Course Code Title	Credit	Hours per week				
			4	3	1	0
	Elective-I	4	3	1	0	
	Elective-1	4	0	0	8	
STA 504	Practicals	12	-	-	-	
STA 505	Project					

Elective Courses for IX-Semester

Course Code	Title	Credit	Hours per week			
				Lectures	Tutorial	Practical
STA 521	Financial Mathematics	4	3	1	0	
STA 522	Data Mining	4	3	1	0	
STA 523	National Development Statistics	4	3	1	0	
STA 524	Population Studies	4	3	1	0	
STA 525	Principal and Practices of Insurance	4	3	1	0	
STA 526	Statistical Methods of Non-Life Insurance	4	3	1	0	
STA 527	Statistical Quality Control	4	3	1	0	
STA 528	Survival Analysis	4	3	1	0	
STA 529	Statistical Methods for Bio-Computing	4	3	1	0	
STA 530	Computer Intensive Statistical Methods	4	3	1	0	
STA 531	Decision Theory and Non Parametric Inference	4	3	1	0	

Course code from STA 521-STA 540 refer to elective courses for IX semester (Integrated M.Sc. Statistics)
Elective Courses for X-Semester

Revised Code		Title		Credit	Hours per week		
STA 541	Contingencies	4	3	1	0		
STA 542	Econometrics	4	3	1	0		
STA 543	Extreme Value Theory	4	3	1	0		
STA 544	Life and Health Insurance	4	3	1	0		
STA 545	Statistical Methods for Reliability Theory	4	3	1	0		
STA 546	Statistical Quality Management	4	3	1	0		
STA 547	Stochastic Finance	4	3	1	0		
STA 548	Machine Learning	4	3	1	0		
STA 549	Statistical Analysis of Clinical Trials	4	3	1	0		
STA 550	Bayesian Inference	4	3	1	0		

Course code from STA 541-STA 560 refer to elective courses for X semester (Integrated M.Sc. Statistics)

Course Code	STA 102
Course Name	Practicals
Credit	01
Objective:	
To get better understanding and implement the concepts learnt in the theory by using data sets	
To have hand-on experience/training to use MS Excel software.	

Learning Outcome:

- Developing skills to represent and analysis data sets using MS Excel software.

Students will be required to do practical, based on topics listed below, using MS Excel:

1. Introduction to MS Excel: Data storage, elementary calculations and graphical representations.
2. Tabulation and Construction of frequency distribution
3. Diagrammatic (Multiple stack bar diagrams, histogram, stem and leaf, pie chart) and graphical
4. (frequency polygon, frequency curve) presentation of the frequency distribution.
5. Measures of Central tendency - I (ungrouped data).
6. Measures of Central tendency - II (grouped data).
7. Measures of Central tendency - III (pooled data).
8. Computation of quantiles by use of Ogive curves,
9. Measures of the Dispersion-I (ungrouped data).
10. Measures of the Dispersion - II (grouped data).
11. Moments, Skewness \& Kurtosis-I (ungrouped data).
12. Moments, Skewness \& Kurtosis-II (grouped data).
13. Computation of raw, central moments, Pearson's coefficient of skewness and kurtosis.
14. Scatter diagram for bivariate data and interoperation.
15. Product moment correlation and Spearman Rank correlation (tied with un tied rank)
16. Correlation coefficient for bivariate frequency data.
17. Curve fitting using method of least square.
18. Regression lines.

SECOND SEMESTER

Course Code	STA 103
Course Name	Probability and Random Variables
Credit	03
Objective:	

To introduce the notion of probability, random variable and expectation, based on which statistical theory and tools have been developed.

Learning Outcome:

- Describing stochastic/random behaviour of variables, using the concept of probability
- Computation of probabilities of events.
- The notion of distribution.
- Computation of moments and other related functions of a distribution.

Concepts of experiments: deterministic, probabilistic, outcomes of experiments. Sample space, Discrete (finite and countably infinite) and continuous sample space, Event, Elementary event, Compound event. Algebra of events (Union, Intersection, Complementation), De Morgan's law. Definitions of Mutually exclusive events, Exhaustive events, Venn diagram. Definition; Axiomatic definition of probability; Addition theorem (Proof of the result up to three events), Elementary properties, Classical definition of Probability as a special case, Probability as an approximation to the relative frequency, illustrative examples for computation of events based on Permutations and Combinations, with and without replacements, impossible events, certain events.
Definition of conditional probability of an event, Multiplication theorem for two events, Independence of events: Pairwise and Mutual Independence of events. Partition of sample space. Statement and proof of Bayes' theorem.

Unit-2

Definition of random variable, Discrete and continuous and mixed type of random variables, Definition of distribution function, Distributions function (df) of random variable, Probability distribution of function of random variable. Probability mass function (p.m.f.) and cumulative distribution function (c.d.f.) of a discrete random variable, Probability density function (p.d.f.) and cumulative distribution function (c.d.f.) of a continuous random variable, relation between df and $\mathrm{pmf} / \mathrm{pdf}$, Median and Mode of a univariate discrete and continuous random variables.

Unit-3

Definition of expectation of a random variable, expectation of a function of a random variable, simple properties, Definitions of mean, variance of univariate distributions, Effect of change of origin and scale on mean and variance, Definition of raw, central moments, mean deviation. Pearson's coefficient of skewness, kurtosis, Definitions probability generating function (p.g.f.), moment generating function (m.g.f.) and characteristic function of a random variable, Effects of change of origin and scale. p.g.f. of sum of two independent random variables is the product of p.g.f.s (statement only), Derivation of mean and variance by using p.g.f.

References

1. Mood A. M. , Grabyll R. A. and Boes D. C., Introduction to the theory of Statistics, Tata McGraw Hill
2. Mukhopadhyay, P., Mathematical Statistics, new Central Book Agency Pvt. Ltd., Calcutta.
3. AM Goon, M K Gupta and B. Das Gupta, Fundamentals of Statistics, Volume-I, World Press.
4. Ross Sheldon M., Introduction to Probability Models, Academic Press
5. Rao, B. L. S. Prakash, A first course in probability and Statistics, World Scientific.

Course Code	STA 104
Course Name	Practicals
Credit	01
Objective:	
to enhance the skills of computing probabilities, related functionals, plotting of density and density functions	

Learning Outcome:

- Learn to compute probabilities, conditional probabilities
- Learn to plot functions using softwares.

CONTENTS

(i) Illustrations related to probability, Conditional probability, and Bayes Theorem.
(ii) Probability mass function plot of discrete r.v.
(iii) Probability density plot of continuous r.v.
(iv) Computation of expectation, variance, third and forth moment for pmf.
(v) Computation of coefficient of Skewness and Kurtosis.
(vi) Computation of probabilities through probability generating function.

CONTENT

Students will be required to do practicals, based on topics listed below, using R / MS Excel:
(i) PMF sketch of Discrete Distributions: Uniform, Binomial, Poisson, Geometric, Negative Binomial, Hypergeometric.
(ii) Computation of Expectation, Variance, Mode, and Skewness and Kurtosis for above discrete distributions.
(iii) PDF sketch of Continuous Distributions: Rectangular, Exponential, Normal, Gamma and Beta-I and II.
(iv) Computation of Expectation, Variance, Mode, and Skewness and Kurtosis for above continuous distributions.
(v) Computation of probabilities based on area property of normal distribution.
(vi) Fitting of distributions: Binomial, Poisson, Normal distributions,
(vii) Simulation of data from discrete and continuous distributions

FORTH SEMSTER

Concept of Statistical inference, sampling method and complete enumeration, Definition of population, parameter, parameter space. Problem of estimation: point, intervals and testing of hypotheses.
Definitions of an estimator, mean squared error (MSE) of an estimator, comparison of estimators based on MSE function. Unbiasedness: Unbiased estimator, Illustration of unbiased estimator for the parameter and parametric function.
Definitions of Consistency, Sufficient condition for consistency, concept of efficiency and sufficiency. NeymanFactorization theorem (without proof)

Unit-3

Methods of estimation: Methods of moments, concept of likelihood function, Maximum Likelihood, Properties of MLE (without proof), Estimation of the parameters of normal distribution and other standard distributions by MLE.

Hypothesis, types of hypothesis, problems of testing of hypothesis, critical region, type I and type II errors, probabilities of type I \& type II errors. Power of a test, best critical region, Observed level of significance, concept of p-value, size of a test, level of significance.

Definition of Most Powerful (MP) test, Neyman - Pearson (NP) lemma for simple null hypothesis against simple alternative hypothesis (with proof)- Illustrations. Power curve of a test.

References

1. George Casella, Roger L. Berger (2002), Statistical Inference, $2^{\text {nd }}$ ed., Thomson Learning.
2. Mukhopadhyay P. (1996): Mathematical Statistics, New central Book Agency (P) Ltd. Calcutta.
3. Rohatgi, V.K. (1984): An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern.
4. Goon, Gupta \& Das Gupta (1991): An Outline of Statistical Theory, Vol. II, World Press.
5. Hogg, R.V. and Craig, A.T. (1971): Introduction to Mathematical Statistics, McMillan.

Course Code	STA 204
Course Name	Practicals
Credit	01
Objective: The main objective is to enhance the practical knowledge of concepts learnt in the theory course of this semester by using Computer Software.	
Learning Outcome:	

- Learn to obtain and sketch densities of order statistics
- Students will be able to implement methods estimation and testing by using appropriate methods and computing softwares.

CONTENT

Students will be required to do practicals, based on topics listed below, using R / MS Excel:
(i) Density plot of maximum and minimum of sample for different discrete and continuous distributions.
(ii) Density of i-th order statistics.
(iii) Point estimation by Method of moments.
(iv) Maximum likelihood estimation.
(v) Mean squared error and unbiasedness of an estimator
(vi) Type I and Type II errors
(vii) Most powerful critical region (NP Lemma)
(viii) Power curves.

PAPER CODE	STA 301
PAPER NAME	Sample Survey
CREDIT	03
TOTAL HOURS	45
Objective: The main objective is to provide the knowledge of concept of sample and population in statistics and also the various sampling schemes and estimation of population parameters and their respective standard errors.	

Learning Outcome:

- Learning the basic concept of sampling and related terminologies.
- Understanding various types of sampling schemes, with their advantages and disadvantages, and estimation of population parameters with their standard errors.
- Learning the use of auxiliary information in the ratio and regression method of estimation.

Unit-1

Basic concept: Elementary units, sampling frame, random and non-random sampling. Sampling, census advantages of sampling, Questionnaire and its characteristics.
Simple random sampling: Simple random sampling from finite population of size N with replacement (SRSWR) and without replacement (SRSWOR): Definitions, population mean and population total as parameters, inclusion probabilities. Sample mean as an estimator of population mean, derivation of its expectation. Estimation of population proportion: Sample proportion (p) as an estimator of population proportion (P), derivation of its expectation, using SRSWOR. Determination of the sample size. Concept of Stratification, methods of allocation, Cost and variance analysis in stratified random sampling

Unit-2

Systematic Sampling: Real life situations where systematic sampling is appropriate, Technique of drawing a sample using systematic sampling, Estimation of population mean and population total, Comparison of systematic sampling with SRSWOR and stratified sampling in the presence of linear trend. Idea of Circular Systematic Sampling.
Cluster Sampling: Real life situations where cluster sampling is appropriate, Technique of drawing a sample using cluster sampling, Estimation of population mean and population total (with equal size clusters)

Unit-3

Ratio Method: Concept of auxiliary variable and its use in estimation, Situations where Ratio method is appropriate, Ratio estimators of the population mean and population total and their standard errors (without derivations), Relative efficiency of ratio estimators with that of SRSWOR. Regression Method: Situations where Regression method is appropriate, Regression estimators of the population mean and population total and their standard errors.

References

1. Cochran, W.G: Sampling Techniques, Wiley Eastern Ltd., New Delhi.
2. Sukhatme, P.V., Sukhatme, B.V. and Ashok A. : Sampling Theory of Surveys with Applications, Indian Society of Agricultural Statistics, New Delhi.
3. Murthy, M.N: Sampling Methods, Indian Statistical Institute, Kolkata.
4. Daroga Singh and Choudhary F.S.; Theory and Analysis of Sample Survey Designs,Wiley Eastern Ltd., New Delhi.
5. Mukhopadhay, Parimal: Theory and Methods of Survey Sampling, Prentice Hall.

Course Code	STA 302
Course Name	Applied
Credit	03
Objective: The main objective is to make aware of statistics in Demographic Studies, Index Numbers, Time Series Data, and Statistical Quality Control.	
Learning Outcome: - Learning the importance of statistical techniques and concepts in the different areas of applied statistics. - To make aware of the use of statistical techniques in decision making.	
Unit-1	
Vital Statistics: Census, Registrar, Ad-hoc surveys, Hospital records, Demographic profiles of the Indian census. Crude death rate, Age-specific death rate, Infant mortality rate, Death rate by cause, standardized death rate. NRR and GRR . Life Table: Description and construction of complete and abridged life tables and their uses.	
Unit-2	
Index Number: Meaning and utility of index numbers, problems in construction of index numbers. Types of index numbers: price, quantity and value, unweighted and weighted index numbers using (i) aggregate method, (ii) average of price or quantity relative method (A.M. or G.M. is to be used as an average). Index numbers using; Laspeyre's, Paasche's and Fisher's formula. Tests of index numbers: unit test, time reversal test and factor reversal test. Cost of living index number: definition, problems in construction. Uses of index numbers. Time Series: Meaning and need of time series analysis, components of time series, additive and multiplicative model, utility of time series. Methods of determining trends.	
Unit-3	
Statistical quality control: Meaning and purpose of Statistical quality control, Concept of process control, product control, assignable causes, chance causes and rational subgroups. ISO standards. Control charts and their uses, Choice of subgroup sizes, Construction of control chart for \bar{X} (mean), R (range), s (standard deviation), \boldsymbol{C} (no. of defectives), \boldsymbol{p} (fraction defectives) with unequal subgroup size. Interpretation of nonrandom patterns of points. Modified control chart. CUSUM Chart. Consumer's risk, producer's risk, OC curve, acceptance sampling plan by attributes and variables. Concept of Six Sigma.	
References	
1. Srivastava, O.S. (1983) : A text book of demography. Vikas Publishing House, New Delhi. 2. Mukhopadhyay, P. (1994): Applied Statistics, new Central Book Agency Pvt. Ltd. Calcutta. 3. Goon A.M., Gupta M.K. and Das Gupta B. (1986): Fundamentals of Statistics, Vol. II, World Press, Calcutta. 4. Duncan A.J. (1974) : Quality Control and Industrial Statistics, IV Edision, Taraporewala and Sons. 5. Benjamin, B. (1959) : Health and vital statistics. Allen and Unwin 6. Chatfield C.: The Analysis of Time Series, IIndEdision Chapman and Hall.	

Course Code	STA 303
Course Name	Theory of Attributes and Design of Experiments
Credit	03
Objective: The main objective is to introduce the notion of dependency of attributes and make students aware of designing and analysis of experiments.	

Learning Outcome:

- Learn association between Attributes.
- Knowing Multiple and Partial correlation.
- Developing suitable experiments and analyse data to draw related inferences.

Unit-1	Theory of attributes: Independence and Association of attributes. Measures of association for two way classified data.
Consistency and independence of data with special reference to attributes. Coefficient of colligation.	
Multiple Correlation and Multiple regression and related results. Partial Correlation and related results.	
Unit-2	
Analysis of one way classified data. Analysis of two way classified data with one observation per cell. Analysis of two way classified data with m observations per cell. Analysis of two way classified data with unequal number of observations in cells under fixed effect model. Test for normality. Unit-3 Basic terms in design of experiments: Experimental unit, treatment, layout of an experiment. Basic principles of design of experiments: Replication, randomization and local control. Choice of size and shape of a plot for uniformity trials, the empirical formula for the variance per unit area of plots. Complete randomized design, randomized block design and Latin square design. Layout, model, assumptions and interpretations: Estimation of parameters, expected values of mean sum of squares, components of variance. Tests and their interpretations, test for equality of two specified treatment effects, comparison of treatment effects using critical difference (C.D.). Factorial design 2^{2} and 2^{3}. Missing Plan technique. References \quad Cochran, W.G: Sampling Techniques, Wiley Eastern Ltd., New Delhi. 6. 7. Sukhatme, P.V., Sukhatme, B.V. and Ashok A.: Sampling Theory of Surveys with Applications, Indian Society of Agricultural Statistics, New Delhi. 8. Murthy, M.N: Sampling Methods, Indian Statistical Institute, Kolkata. 9. Daroga Singh and Choudhary F.S.; Theory and Analysis of Sample Survey Designs,Wiley Eastern Ltd., New Delhi. 10. Mukhopadhay, Parimal: Theory and Methods of Survey Sampling, Prentice Hall.	

Course Code	STA 304
Course Name	Practical
Credit	04
Total hours	45
Objective:	

The main objective is to give exposure for the practical implementation of the topics learnt in this semester by using software

Learning Outcome:

- Formulation and solving problems using LPP
- computation of Demographic characteristics
- Awareness and use of Charts for SQ
- Analyses of data under different designs

1. Linear programming (graphical methods).
2. Simplex method.
3. Transportation problems.
4. Computation of various mortality and fertility rates.
5. Construction of life table and computation of expectation of life and force of mortality.
6. Construction of index numbers.
7. Tests for consistency of index numbers.
8. Construction of Consumer Price Index - interpretation.
9. Determination of secular trend by moving averages and least squares methods.
10. $\bar{X}-R$ charts. (Standard values known and unknown)
11. $n p$ and p charts. (Standard values known and unknown).
12. Single sampling inspection plan by attributes
13. Analysis of CRD.
14. Analysis of 2^{2} factorial experiment using RBD layout.
15. Analysis of 2^{3} factorial experiment using RBD layout.
16. Analysis of 2^{3} factorial experiment using RBD layout. (Complete confounding)
17. Measures of association for two way classified data.
18. Multiple and partial correlation.

SIXTH SEMESTER

Course Code	STA 305
Course Name	Operatio
Credit	03
Objective: The main objective of this paper is to make students acquainted with the use of optimization techniques in decision making.	
Learning Outcome: - Understanding optimization through Linear Programming Problem. - Knowing how to control Inventory statistically. - Learning Game Theory.	
Unit-1	
Definitions and scope of operation research, different types of models in operations research - their construction and general method of solution. Elements of linear programming problem (LPP): Canonical and standard forms, formulation of LPP, graphical method to solve two variable LPP, solution of LPP using simplex procedure, use of artificial variables in LPP, generation of extreme point solutions, principle of duality in LPP, statement and proof of duality theorem, simple problems based on duality theorem.	

Unit-2

Allocation Models: Transportation problem (T.P.) different methods of finding initial feasible solution of a TP, UV method of finding optimal solution of a T.P., solution of assignment problem using Hungarian method. Formation of TP as LPP and its applications in routing problems and travelling salesman's problem. Inventory Control: Definitions of various costs involved in inventory control. Deterministic Economic Lot Size problems with and without shortages.

Unit-3

Theory of games: Two person zero-sum games, pure and mixed strategies, saddle point, maximin-minimax principle of rectangular games, games without saddle point, dominance and modified dominance principles, graphical solution of $2 \times N$ and $M \times 2$ games, reduction of game problems to a L.P.P.

References

1. Taha, H.A. (1999): Operations Research, Macmillan Publishing Company.
2. Hiller F.S. and Libermann G.J. (1995): Introduction to Operations Research, McGraw Hill.
3. Hadley G. (1965) : Linear programming, Addison Wesley.
4. Gass G.I. (1958): Linear Programming- Methods and Applications, McGraw Hill.
5. Mc Kinsey J.C.C. (1952): Introduction to the Theory and Games, McGraw Hill Book Co.
6. KantiSwaroop, Gupta P.K. and Singh M.M. (1985) : Operations Research, Sultan Chand and Sons.

Course Code	STA 306
Course Name	Reliability and Survival Analysis
Credit	03
Total hours	45

Objective:

The main objective is to introduce different concepts and their interpretation in reliability and survival analysis.
Learning Outcome:

- Learning various statistical lifetime models.
- Understanding various classes and their interrelations.
- Non-parametric estimation in lifetime data.

Unit-1

Preliminaries: Definition and concept of time, event, Reliability/Survival function, Quantiles, hazard rate, cumulative hazard function and their relation with survival function mean residual life. Parametric models: Exponential, Weibull and normal and their survival characteristics.
Censoring mechanisms- type I, type II and left right and interval censoring. Likelihood function under censoring and related problems, Fitting parametric models to reliability/survival data with and without censoring.

Unit-2

Component and System and its Configuration, Structure function, Series Configuration, Parallel Configuration, k out of n structure, Series -Parallel Configuration, Parallel-Series Configuration. Reliability of coherent system and characteristics, Cuts and Path, modular decomposition, Basic ideas of accelerated life testing, IFR, IFRA, NBU, DMRL, NBUE classes and their duals.

Unit-3

Empirical survival function, Actuarial estimator, Kaplan-Meier estimators and its properties. Cox's proportional hazards model with one covariate and illustration based on survival data. Partial likelihood function and Properties, residuals in Cox regression model.

References

1. Deshpande, J.V. and Purohit, S. G.(2005): Life Time Data: Statistical Model and Methods, World Scientific.
2. Cox, D. R. and Oakes, D. (1984): Analysis of Survival Data, Chapman and Hall, New York.
3. Sinha, S. K. and Kale, B. K. (1983): Life Testing and Reliability Estimation, Wiley Eastern Limited.
4. Elandt - Johnson, R.E. Johnson N. L.: Survival Models and Data Analysis, John Wiley and Sons.
5. Miller, R. G. (1981): Survival Analysis (John Wiley)

Course Code	STA 307
Course Name	Statistical Inference -II
Credit	03
Objective: The purpose is to enhance the existing knowledge of Point Estimation and Testing of Hypothesis and introduce the concept of Interval Estimation.	

Learning Outcome:

- Understanding Cramer Rao inequality, Rao Blackwell theorem, Lehmann - Scheffe theorem.
- Learning the concept of MVBUE, MVUE, UMVUE.
- Knowledge of construction of MP test and UMP test.
- Knowledge of GLRT
- Knowledge of Interval Estimation.

Unit-1

Statement and proof of Cramer Rao inequality. Definition of Minimum Variance Bound Unbiased Estimator (MVBUE) of $\phi(\theta)$, (statement only). Rao-Blackwell theorem, Lehmann-Scheffe theorem. Proof of the following results:
(i) If MVBUE exists for θ then MVBUE exists for $\phi(\theta)$, if $\phi($.$) is a linear function.$
(ii) If T is MVBUE for θ then T is sufficient for θ. Examples and problems.

Definition of MVUE, Procedure to obtain MVUE (statement only), examples. Minimum Variance Unbiased Estimator (MVUE) and Uniformly Minimum Variance Unbiased Estimator (UMVUE), complete sufficient statistic and uniqueness of UMVUE whenever it exists.

Unit-2

Review of testing of hypothesis and examples of construction of MP test of level a for binomial, Poisson, uniform, exponential and normal models.
Testing for one sided and two sided alternatives: Power function of a test, Monotone likelihood ratio properties, definition of uniformly most powerful (UMP) level a test. Statement of the theorem to obtain UMP level a test for one-sided alternative. Illustrative examples.
Likelihood Ratio Test (LRT) and its properties: LRT for (i) mean and variance of normal population. (ii) The difference of two means and ratio of two variances of normal populations.

Unit-3

The need and the concept of confidence interval, Pivotal method of confidence interval, Confidence interval for proportion, mean and variance of normal distribution. Large sample Confidence interval.

References

1. George Casella, Roger L. Berger (2002), Statistical Inference, $2^{\text {nd }}$ ed., Thomson Learning.
2. Mukhopadhyay P. (1996): Mathematical Statistics, New central Book Agency (P) Ltd. Calcutta.
3. Rohatgi, V.K. (1984): An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern.
4. Goon, Gupta \& Das Gupta (1991): An Outline of Statistical Theory, Vol. II, World Press.
5. Hogg, R.V. and Craig, A.T. (1971): Introduction to Mathematical Statistics, McMillan.

PAPER CODE	STA 308
PAPER NAME	Practicals
CREDIT	03
Objective:	
The main objective is to enhance the practical knowledge of an individual in statistical problem solving using Computer	
Software.	
Learning Outcome:	
$\quad-\quad$ Estimation in survival analysis	
$\quad-\quad$ Estimation of population parameters and their efficiencies under different sampling schemes.	
$\quad-\quad$ Computation of lower bound for variance	
	Inference related to normal models.

1. Plotting of survival function, hazard rate for probability distributions.
2. Kaplan-Meier Estimator.
3. Cox's proportional hazards model
4. Cox regression model
5. Simple random sampling with and without sampling
6. Stratified random sampling.
7. Systematic Sampling.
8. Cluster sampling
9. Ratio Method of Estimation.
10. Regression Method of Estimation.
11. Problems on MVBUE.
12. Power function of a test
13. LRT for mean and variance of normal population. Andthe difference of two means and ratio of two variances of normal populations.

Course Code	STA 401
Course Name	Probability Theory
Credits	04
Objective:	
The main purpose is to introduce Probability Theory under Axiomatic approach and develop further theory and concepts including the limit behaviours.	

Learning Outcome:

- Learning the concept of field, sigma field, probability space, probability measure.
- Knowing various inequalities.
- Understanding independence of events.
- Learning the concept of convergence of sequences of random variables.
- Learning Borel Cantelli lemma, Kolmogrov 0-1 law, Slutsky's theorem, Law of Large Numbers, and CLT.

Unit-1
Classes of sets, field and sigma fields, limit of sequences of subsets, sigma field generated by a class of subsets, Borel fields. Probability measure on a sigma field, probability space, continuity of a probability measure. Real and vector-valued random variables.

Unit-2

Distribution functions of discrete rvs, continuous and mixed type rv, decomposition of a df. Expectation of rv and its properties. Linear properties of Expectations, Inequalities: Jensen's, Chebychevs, Markov, Hölders and Lyapounov inequalities.

Unit-3

Independent of two events and $n(>2)$ events, sequence of independent events, independent class of events $\pi-$ systems and λ-systems of events, Dykin's theorem(without proof) independence of rvs of events. Borel zeroone law, Borel-Cantelli Lemma, Kolmogorov zero-one law.

Unit-4

Convergence of sequences of random variables. Convergence in distribution and in probability. Almost sure convergence and convergence in the $r^{\text {th }}$ mean. Implication between modes of convergence. Slutsky's theorem. Monotonic convergence theorem and dominated convergence theorem. Fatous lemma. Law of large number: weak law of large number, Tchebychev and Khintchine theorem (with proof) and strong law of large number (without proof). Inversion, Continuity and Uniqueness theorems of Characteristics function. DemoivreLaplace Central Limit Theorem, Liapounovs and Lindeberg's CLT (without proof).

References

1. Bhat, B. R. (1999). Modern Probability Theory, 2/e, New Age International, New Delhi.
2. Rao. B. L. S. Prakasa (2009). A First course in Probability and Statistics. World Scientific
3. Meyer, P.A. An Introduction to Probability and Its Applications. PHI
4. Rohatgi V.K \& A.K. MD. EhsanesSaleh (2001): An Introduction to Probability Theory and Mathematical Statistics, 2 ${ }^{\text {nd }}$. John Wiley and Sons.

Course Code	STA 402
Course Name	Distribution Theory
Credits	04
Objective:	

Objective:
The main objective is to know the genesis of important distributions, their properties. Introducing of bivariate distributions, conditional and marginal distributions and distributions of Order Statistics.
Learning Outcome:

- Discrete and Continuous Distributions.
- Knowledge of theoretical foundations of Statistical Distributions.
- Transformation of variables.
- Relation between various distributions.
- Application of various distributions.
- Learning Compounding and Truncation techniques to generate new distributions.
- Learning distribution of order statistics.

Unit-1

Review of Discrete and Continuous distributions. Weibull, Pareto, lognormal, Laplace, Cauchy, logistic, Rayleigh distribution their properties and applications.

Unit-2

Discrete and continuous bivariate random variables: Definitions, Computation of probabilities of various events, marginal, conditional, product moments and correlations. Conditional expectation and conditional variance.
The p. d. f. of a bivariate normal distribution, Marginal and conditional distributions, conditional expectation and conditional variance, regression lines of Y on X and X on Y., independence and uncorrelated-ness imply each other, m. g. f and moments. Plotting of bivariate normal density function.
Unit-3
Functions of random variables and their distributions using Jacobian of transformation and other tools. Distribution of distribution function. Bivariate exponential distributions.
Concept of a sampling distribution. Sampling distributions of $\mathrm{t}, \mathrm{X}^{2}$ and F (central and non central), their properties and applications. Cochran's theorem. Independence of quadratic forms.

Unit-4

Compound, truncated and mixture distributions. Convolutions of two distributions. Order statistics: their distributions and properties. Joint, marginal and conditional distribution of order statistics. The distribution of sample range and sample median. Extreme values and their asymptotic distribution (statement only) with applications.

References

1. Rohatgi V.K \& A.K. MD. EhsanesSaleh: An Introduction to Probability Theory and Mathematical Statistics, $2^{\text {nd }}$. John Wiley and Sons, 2001.
2. Johnson, Kotz and Balakrishna, Continuous univariate distributions, Vol- 1 IInd Ed, John Wiley and Sons
3. Johnson, Kemp and Kotz, Univariate discrete distributions, IIInd Ed, John Wiley and Sons
4. Mukhopadhyay P. (1996): Mathematical Statistics, New central Book Agency (P) Ltd. Calcutta.
5. Goon, Gupta \& Das Gupta (1991): An Outline of Statistical Theory, Vol. I, World Press.
6. David, H. A., \&Nagaraja, H. N. (1970). Order statistics. John Wiley \& Sons, Inc..

Course Code	STA 403
Course Name	Real Analysis and Linear Algebra
Credits	04
Objective:	

The main purpose is to provide mathematical foundation for statistics courses to enhance their knowledge in Real Analysis and Linear algebra.

Learning Outcome:

- Students will be aware of the need and use of Real Analysis and Linear algebra tools
- Students will be aware of conversant with Matrix theory concepts to be used in Multivariate Analysis, Linear Models and Designs of Experiments.
- Knowledge of these concepts will help the students for their higher students.

Unit-1

Review of basic differential and integral calculus. Elementary set theory, finite, countable and uncountable sets, Real numbers, limit point, interior point, open and closed subsets of R, supremum, infimum. convergence, limsup, liminf, Bolzano-Weisstrass theorem, Heine Borel theorem, continuity, uniform continuity, differentiability, Riemann sums and Riemann integral, Improper Integrals. Mean value theorem. Riemann-Stieltjes (R-S) integral of a bounded real valued function. Necessary and sufficient condition for R-S integrability. Properties of R-S integrals. Integration by parts. Change of variables in R-S integrals.
Unit-2
Sequences and series of functions, uniform convergence, Weierstrass test. Monotonic functions, types of discontinuity, functions of bounded variation. Functions of several variables, partial derivative, derivative as a linear transformation. Maxima and minima of functions of several variables. Lagrangian multipliers.
Unit-3
Vector spaces, subspaces, linear dependence, basis, dimension, algebra of linear transformations. Algebra of matrices, rank and determinant of matrices, inverse matrices, generalized inverse of a matrix and its properties, linear equations, eigen values and eigenvectors and their applications. Cayley-Hamilton theorem. Spectral decomposition of a symmetric matrix.

Unit-4

Matrix representation of linear transformations. Orthogonal transformations. Orthogonal and idempotent matrices. Change of basis, inner product spaces, canonical forms, diagonal forms. Quadratic forms, reduction and classification of quadratic forms.

References

1. Searle, S. R. (1982). Matrix Algebra Useful for Statistics; John Wiley, New York.
2. RamachandraRao, A. and Bhimasankaram, P. (1992): Linear Algebra, Tata McGraw hill.
3. Trench William (2003). Introduction to Real Analysis, Pearson Education
4. Krishnamurthy V., Mainra V.P. and Arora J. L. (2009) An introduction to Linear Algebra, East-West Press Pvt Ltd.
5. Rudin, W. (1985). Principles of Mathematical Analysis, McGrawhill, New York.
6. Malik, S.C. and Arora, S. (1998). Mathematical Analysis, New Age, New Delhi.
7. Bartle,R.G.(1975) The Elements of Real Analysis, 2/e, John Wiley.

Course Code	STA 404
Course Name	Sampling Theory
Credits	04
Objective: The main objective is to provide the knowledge of concept of sample and population in statistics and also the various sampling schemes. Estimation of population parameters and their respective standard errors.	

Learning Outcome:

- Learning the basic concept of sampling and related terminologies.
- Understanding various types of sampling schemes, with their advantages and disadvantages, and estimation of population parameters with their standard errors.
- Learning the use of auxiliary information in the ratio and regression method of estimation.
- Understanding need of double sampling scheme.
- Understanding non sampling errors and use of some estimation techniques with special reference to nonresponse problems.

Unit-1

Fixed population and super-population approaches. Distinct features of finite population sampling, Probability sampling design and estimators along with basic statistical properties. Review of some important results in SRSWOR and SRSWR.

Unit-2

Estimation of population mean/Total in stratified population, Allocation problem in stratified random sampling in case of fixed cost and also for specified precision. Expression for variance of stratified sample mean in case of fixed cost, formation and construction of strata, Post stratification, Double sampling with post stratification, Deep stratification, Controlled sampling.

Unit-3

Unequal probability sampling: PPSWR/WOR methods (including Lahiri's scheme) and DesRaj estimator, Murthy estimator (for $n=2$). Horvitz Thompson Estimator of finite population total/mean, Expression for Variance (HTE) and its unbiased estimator, Issue of non-negative variance estimation.

Unit-4

Double sampling scheme, some double sampling estimators for mean using auxiliary character (Ratio, regression and product) method of estimation, Some unbiased ratio type estimators for population mean, Concept of cluster sampling, two stage sampling, Two phase sampling, Non-sampling error with special reference to non-response problems.

References

1. Cochran, W.G: Sampling Techniques, Wiley Eastern Ltd., New Delhi.
2. Sukhatme, P.V., Sukhatme, B.V. and Ashok A.: Sampling Theory of Surveys with Applications, Indian Society of Agricultural Statistics, New Delhi.
3. Murthy, M.N: Sampling Methods, Indian Statistical Institute, Kolkata.
4. Daroga Singh and Choudhary F.S.; Theory and Analysis of Sample Survey Designs, WileyEastern Ltd., New Delhi.
5. Mukhopadhay, Parimal: Theory and Methods of Survey Sampling, Prentice Hall.

Course Code	STA 405
Course Name	Practicals
Credits	04
Objective:	

The main objective is to enhance the practical knowledge of an individual in statistical problem solving using Computer Software.

Learning Outcome:

- Learning to perform Statistical Computation using Software.

Content \quad Practical based on IMST 411-414

Students will be required to do practicals using R-software based on opted theory papers

1. Convergence of the random variable.
2. Fitting of discrete and continuous distributions
3. Sketching of p.m.f./ pdf of discrete/ continuous distributions
4. Random variable generation for Weibull, Pareto, lognormal, Laplace, Cauchy, logistic, Rayleigh distribution and computation of distributional properties.
5. R- program (User defined) for Matrix operations (Multiplication, determinate, inverse, Eigen values and vector)
6. Simple random sampling with and without replacement.
7. Stratified random sampling.
8. Unequal probability sampling: PPSWR/WOR methods (including Lahiri's scheme)
9. Horvitz-Thompson Method of Estimations
10. Double sampling
11. Ratio Method of Estimation.
12. Regression Method of Estimation.
13. Cluster sampling
14. Two stage sampling, Two phase sampling, Non-sampling error

EIGHT SEMESTER

Criteria of a good estimator: unbiasedness, consistency, efficiency and sufficiency. Concept of mean squared error. Fisher-Neyman factorization theorem, Family of distributions admitting sufficient Statistic.
Point estimation, Maximum likelihood method (MLE), moments, Least squares method. Method of minimum chi-square and percentiles. Properties of maximum likelihood estimator (with proof). Successive approximation to MLE, Method of scoring and Newton-Raphson method.

Unit-2

Cramer-Rao inequality and its attainment, Cramer-Huzurbazar theorem (statement only), Completeness and minimal sufficient statistic, Ancillary statistic, Basu theorem, Uniformly minimum variance unbiased estimator (UMVUE). RaoBlackwell and Lehmann-Scheffe theorems and their applications, Review of convergences of random variables and their implications, Delta method and its application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator.

Unit-3

Statistical Hypothesis, critical region, types of errors, level of significance, power of a test, Test function, Randomized and non-randomized tests, Most powerful test and Neyman-Pearson lemma. MLR family of distributions, unbiased test. Uniformly most powerful test. Uniformly most powerful unbiased test. Likelihood ratio test with its properties. SPRT, OC curve, ASN function, Wald's equation and problems.
Unit-4
Confidence interval, confidence level, construction of confidence intervals using pivots, Determination of confidence intervals based on large and small samples, uniformly most accurate one sided confidence interval and its relation to UMP test for one sided null against one sided alternative hypotheses.

References

1. George Casella, Roger L. Berger, Statistical Inference, 2nd ed., Thomson Learning.
2. Mukhopadhyay P.: Mathematical Statistics, New central Book Agency (P) Ltd. Calcutta.
3. Rao, C.R.: Linear Statistical Inference and its Applications, 2nd ed, Wiley Eastern.
4. Rohatgi, V.K.: An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern.
5. Goon, Gupta \& Das Gupta: An Outline of Statistical Theory, Vol. II, World Press.
6. Hogg, R.V. and Craig, A.T.: Introduction to Mathematical Statistics, McMillan.
7. Kale, B.K. : A First Course on Parametric Inference, Narosa Publishing House.
8. Lehmann, E.L. Testing Statistical Hypotheses, Student Editions.

Course Code	STA 407
Course Name	Linear Models
Credits	04

Objective:
The main purpose is to provide the theoretical foundations for the Linear Estimation Theory and Regression Analysis.

Learning Outcome:

- Understanding how Regression techniques are used in the statistical data analysis.
- Knowing different methods to estimate and test the relation between the independent and dependent variables.
- Understanding the concept of generalized linear model.

Unit-1

Theory of linear estimation, Estimable function, Simple linear regression, multiple regression model, least squares estimation, variance and covariance of least squares estimator, Gauss-Markov theorem in linear estimation.
Unit-2
Interval Estimation for regression coefficients $\beta_{0,} \beta_{1}$ and ${ }_{\sigma}{ }^{2}$, Interval estimation of the linear functions of β. Interval estimation of the mean response, simultaneous confidence intervals. The R^{2} statistic. Hypothesis testing for model adequacy, testing of sub hypothesis. Test of hypothesis for a linear parametric function. Point and interval prediction.

Unit-3

Fundamental concept of generalized linear model (GLM), exponential family of random variables. Link functions such as Logit, Probit, binomial, inverse binomial, inverse Gaussian, gamma. Non linear models, ML estimation in non linear models.

Unit-4

Diagnostic checks for suitability and validation of a linear regression model, graphical techniques, tests for normality, linearity, uncorrelated ness, multi collinearity, lack of fit, C_{p} criterion. Ridge regression, outliers and influential observations. Stepwise, forward and backward procedures for selection of best sub-set of repressors.
References

1. Montgomery, Douglas C.; Peck, Elizabeth A.; Vining, G. Geoffrey: (2003) Introduction to Linear Regression Analysis. John Wiley and sons.
2. Draper, N. R. \& Smith, H(1998) Applied Regression Analysis, 3rd Ed., John Wiley..
3. Dobson, A. McCullagh, P \&Nelder, J. A. (1989) Generalized Linear Models, Chapman \& Hall.
4. Ratkowsky, D.A. (1983) Nonlinear Regression Modelling (Marcel Dekker).
5. Hosmer, D.W. \& Lemeshow, S. (1989) Applied Logistic Regression (John Wiley).
6. Seber, G.E.F. and Wild, C.J. (1989) Nonlinear Regression (Wiley)
7. Neter, J., Wasserman, W., Kutner, M.H. (1985) Applied Linear Statistical Models. (Richard D. Irwin).
8. Rao.C.R(1973).:Linear statistical Inference and its application.
9. Goon, A.M., Gupta, M.K. and Das Gupta, B. (1967): An Outline of Statistical Theory.

Course Code	STA 408
Course Name	Stochastic Process
Credits	04
Objective:	
The main objective of the paper is to provide theoretical foundations of Stochastic Processes and to introduce different	
Stochastic/Random Processes and their applications.	

Learning Outcome:

- Classification of general Stochastic Process.
- Learning Markovian properties and its consequences.
- Understanding Poisson Process and its importance.
- Leaning applications of Branching processes.

Unit-1

Definition and examples of stochastic process: Classification of general stochastic processes into discrete/continuous time, discrete/continuous state spaces, elementary problems, Random walk and Gambler's ruin problems, Counting process.

Unit-2

Markov chains: Definition and examples of Markov Chain, Transition probability matrix, classification of states, communicating classes, recurrence: non-recurrence, Irreducibility, Stationary distribution and its interpretation. Chapman-Kolmogorov equation, Stationary probability distribution and its applications. Computation of n-step transition probability matrix by spectral representation. Absorption probability and mean time to absorption.
Unit-3

Continuous time Markov Chain: Poisson process and related inter-arrival time distribution, compound Poisson process, Pure birth process, pure death process, birth and death process, problems, Renewal processes, Elementary renewal theorem (statement only) and its applications.

Unit-4

Galton -Watson branching processes: Definition and examples of discrete time branching process, Probability generating function and its properties, Offspring mean and probability of extinction. Introduction to Brownian motion process and its basic properties.

References

1. Kulkarni, Vidyadhar: Modeling and Analysis of Stochastic systems, G. Thomson Science and Professional.
2. Bhat, B.R.:. Stochastic Models: Analysis and Applications, (2nd New Age International, India).
3. Medhi J. : Stochastic processes, new Age International (P) Ltd.
4. Karlin S. and Taylor H.M. : A First Course in Stochastic Process, Academic Press
5. Hoel P.G., Port S.C. and Stone C.J.: Introduction to Stochastic Process, Universal Book Stall.
6. Parzen E. : Stochastic Process, Holden-Day
7. Cinlar E. Introduction to Stochastic Processes, Prentice Hall.
8. Adke S.R. and ManjunathS.M.:An Introduction to Finite Markov Processes, Wiley Eastern.
9. Ross S.M.: Stochastic Process, John Wiley.
10. John G. Kemeny, J. Laurie Snell, Anthony W. Knapp: Denumerable Markov Chains.

Course Code	STA 410
Course Name	Practicals
Credits	$04(0-0-4)$
Objective: The main objective is to enhance the practical knowledge of an individual in statistical problem solving using Computer Software.	
Learning Outcome: \quad \quad Learning to perform Statistical Computation using software. CONTENT Practical based on MST 421-424 Students will be required to do practicals using R-software based on Course IMST 421-424 . There shall be minimum four practical assignments from each course of the semester.	

NINTH SEMESTER

Course Code	STA 503
Course Name	Practicals
Credits	04
Objective:	

The main objective is to enhance the practical knowledge of an individual in statistical problem solving using Computer Software.

Learning Outcome:

Learning to perform Statistical Computation using software.

CONTENT \quad Practicals

Students will be required to do practicals using R-software based on opted theory papers

1. Select a series and obtain Mean, Variance and auto covariance autocorrelationupto lag 5.
2. Compute and plot the empirical autocovariance function and the empirical autocorrelation
3. Generate and plot $\operatorname{AR}(3)$-processes $(\mathrm{Yt}), \mathrm{t}=1, \ldots, 500$ where the roots of the characteristic polynomial have the following properties: (i) all roots are outside the unit disk, (ii) all roots are inside the unit disk, (iii) all roots are on the unit circle, (iv) two roots are outside, one root inside the unit disk, (v) one root is outside, one root is inside the unit disk and one root is on the unit circle, (vi) all roots are outside the unit disk but close to the unit circle.
4. Fit a time series using Box-Jenkins Methodology.
5. Establish Yule Walker equations of order 5.
6. Take a GDP series and test the unit root hypothesis using DF and ADF test.
7. Obtain the autocorrelation and cross correlation for a multivariate time series.
8. Sketch of posterior distribution with informative and non-informative priors.
9. Bayes estimation of parametric family of distributions.
10. Posterior predictive distribution.
11. Monte Carlo integration.
12. Acceptance reject method.

ELECTIVES for IX-SEMESTER

Course Code	STA 522
Course Name	Data Mining (Elective)
Credits	04
Objective:	
The main objective of this course is to introduce theoretical foundations of develop algorithms, and methods of deriving	
valuable insights from data which includes detection and identification of outliers and anomalies, understanding the	
sequential and temporal patterns.	

Learning Outcome:

- The student will learn to approach data mining as a process, by demonstrating
- competency in the use of data mining to the decision-support level of organizations
- The students will learn to categorize and carefully differentiate between situations for applying different data-mining techniques.
- Identify appropriate methods to address a given problems with data mining methods such as frequent pattern mining, association, correlation, classification, prediction, and cluster and outlier analysis
- Able to design and implement data-mining solutions for different applications
- Proficiency in evaluating and comparing different models used for Data Mining

Unit 1

Data Mining: Introduction, Techniques, Issues and challenges, applications, Data preprocessing, Knowledge representation
Association Rule Mining: Introduction, Methods to discover association rules, Association rules with item constraints

Unit 2

Decision Trees: Introduction, Tree construction principle, Decision tree construction algorithm, Pruning techniques, Integration of pruning and construction

Unit 3

Cluster analysis: Introduction, clustering paradigms, Similarity and distance, Density, Characteristics of clustering algorithms, Center based clustering techniques, Hierarchical clustering, Density based clustering, Other clustering techniques, Scalable clustering algorithms, Cluster evaluation

Rough set theory, use of rough set theory for classification \& feature selection.
ROC Curves: Introduction, ROC Space, Curves, Efficient generation of Curves, Area under ROC Curve, Averaging ROC curves, Applications

Unit 4

Advanced techniques: Web mining - Introduction, Web content mining, Web structure mining, Web usage mining; Text mining- Unstructured text, Episode rule discovery from text, Text clustering; Temporal data mining - Temporal association rules, Sequence mining, Episode discovery, time series analysis; Spatial data mining Spatial mining tasks, Spatial clustering, Spatial trends.

References

1. Data Mining Techniques: A.K. Pujari, Universities Press, 2001
2. Mastering Data Mining: M. Berry and G. Linoff, John Wiley \& Sons., 2000

Course Code	STA 524
Course Name	Population Studies (Elective)
Credits	04
Objective: The main purpose is to enhance the knowledge about the data that deals with the laws of human mortality, morbidity and demography.	

Learning Outcome:

- Learning about different methods of demographic data collection and related errors.
- Learning about the fertility/ mortality models.
- Understanding Life Tables and their construction.
- Learning about the theory of stable population, population projection and about the concept of migration theory.

Unit-1

Simple Registration System, SRB Bulletin, Coverage and content errors in demographic data, ChandrasekharanDeming formula to check completeness of registration data, adjustment of age data- use of Whipple, Myer and UN indices. population transition theory.

Unit-2

Measures of fertility; stochastic models for reproduction, distributions of time of birth, inter- live birth intervals and of number of births (for both homogeneous and homogeneous groups of women), estimation of parameters; estimation of parity progression from open birth interval data. Measures of Mortality; construction of abridged life tables, infant mortality rate and its adjustments, model life table.
Unit-3
Stable and quasi-stable populations, intrinsic growth rate. Models of population growth and their filling to population data. Internal migration and its measurement, migration models, concept of international migration.

Unit-4

Methods for population projection, component method of population projection, Nuptiality and its measurements.

References
 Books Recommended

1. Kumar, R. (1986): Technical Demography, Wiley Eastern Ltd.
2. Benjamin, B. (1969): Demographic Analysis, George, Allen and Unwin.
3. Chiang, C.L. (1968): Introduction to Stochastic Progression.
4. Cox, P.R. (1970): Demography, Cambridge University Press.
5. Keyfitz, N. (1977): Introduction to the Mathematics of Population-with Revisions, Addison-Wesley, London.
6. Spiegelman, M. (1969): Introduction to Demographic Analysis, Harvard University Press.
7. Wolfenden, H.H. (1954): Population Statistics and Their Compilation, Am Actuarial Society.

Unit-1

Survival Characteristics and Parametric Models: Survival function, quantiles, hazard rate, cumulative hazard function, and mean residual life, Parametric models for study of event time data: Exponential, Weibull, extreme value, gamma, Pareto, logistic, log-logistic, normal, log-normal and mixture models -their survival characteristics.

Parametric Inference: Longitudinal studies. Censoring mechanisms- type I, type II and left right and interval censoring. Likelihood function under censoring and estimation. Tests based on LR, MLE.

Unit-2

Nonparametric Inference: Actuarial and Kaplan-Meier estimators. Treatment of ties. Self-consistency property and asymptotic properties of K-M estimator (statement). Pointwise confidence interval for $\mathrm{S}(\mathrm{t})$. Nelson-Aalen estimator of cumulative hazard function and estimation of $\mathrm{S}(\mathrm{t})$ based on it. Two-sample methods. Comparison of survival functions: Log rank and Tarone-Ware tests.

Unit-3

Semi-parametric Inference: Explanatory variables- factors and variates. Cox proportional hazards model. The partial likelihood and estimation of regression coefficients and their standard errors. Breslow's estimator, Statement of asymptotic properties of the estimator. Confidence interval for regression coefficients. Wald, Rao and likelihood tests for β. Accelerated life model. Model selection criteria and comparison of nested models (-2logL, AIC, BIC). Using information on prognostic variables in a competing risks model.

Unit-4

Concept of frailty. Shared frailty models. Identifiability of fraity models. Various frailty models. Gamma, positive stable, inverse Gaussian, power variance function, compound Poisson and compound negative binomial shared frailty models. Frailty regression models. Bivariate and correlated frailty models. Additive frailty models. Reversed hazard rates, Cox's proportional reversed hazards model.

References

Books Recommended

1. Cox, D.R. and Oakes, D. (1984). Analysis of Survival Data, Chapman and Hall.
2. Deshpande, J.V. and Purohit S.G. (2005). Life Time Data: Statistical Models and Methods, Word Scientific.
3. Duchateau, L. and Johnson, P. (2008). The Frailty Model. Springer: New York.
4. Gross A.J. and Clark, V. A. (1975) Survival Distributions: Reliability Applications in the Biomedical Sciences, John Wiley and Sons.
5. Hanagal, D. D. (2011). Modeling Survival Data Using Frailty Models. CRC Press: New York.
6. Hougaard, P. (2000). Analysis of Multivariate Survival Data. Springer: New York.
7. Wienke, A. (2011). Frailty Models in Survival Analysis, CRC Press: New York.

PAPER CODE	STA 529
PAPER NAME	Statistical Methods for Bio-Computing (Elective)
CREDIT	04
Objective:	

The use of statistical methods and tools from applied probability to address problems in computational biology.

Learning Outcome:

Students can use the statistical topics and techniques will be used to address the biological problems: classical hypothesis testing, Bayesian hypothesis testing, Multiple hypothesis testing, extremal statistics, Markov chains, continuous Markov processes, Expectation Maximization and imputation, classification methods, Alignment of biological sequences and Molecular phylogeny Analysis methods.

Unit-1 Lectures: 11

Type of genetic data: - Molecular and morphological data. Differences and advantages of molecular data on, morphological data, Character data and distance data, their relative merits and demerits. Concept of entropy, entropy as a measure of uncertainty, entropy of single and combined scheme/s, Measure of information content based on entropy. Relative entropy its similarity with likelihood ratio. Applications of these to biological sequences.

Unit-2	Lectures:11

(Alignment of biological sequences): Pairwise and local alignment of biological Sequences (DNA/protein sequences). How biological sequences are different from mathematical sequences? The scoring matrices for alignment algorithms PAM and BLOSUM matrices. Algorithm for global alignment (Needleman Wunch algorithm). Local alignment algorithms (Smith - Waterman) Gap Model, dynamic programming algorithms for alignment with gaps such as linear gap model, affine gap model. Introduction to heuristic alignment algorithms such as BLAST, FASTA..

Unit-3 Lectures: 11

Molecular phylogeny Analysis: Tree of life, gene and species tree. Distance based methods for reconstruction of phylogenetic tree such as UPGMA, weighted UPGMA, transformed distance method, nearest neighbor joining method. Comparison of trees generated using different distance function Requisites of a good distance function. Character based methods for molecular phylogeny, maximum likelihood method and maximum parsimony method. Assessing trees via bootstrap. Probabilistic approach to phylogeny. Probabilistic models of evolution, Felsenteins algorithm for likelihood computation. Juke Canter model and Kimura and other probabilistic models for evolution.

Unit-4
 Lectures: 12

Applications of Markov and Hidden Markov models to biological sequence Analysis. Markov chain as a classifier, use of Markov chain Model for demarcation of a region in Biological sequence analysis. Application of these in genetic sequence analysis such as detection of CPG Island. Testing whether given stretch of sequence is coming from CPG Island (use of Markov model for discrimination) Markov model based classification clusterization, testing order of a Markov model, testing homogeneity of two Markov models, Use of these test to design clustering algorithm. Hidden Markov/chains. Difference between these and simple Markov chains. Analysis of Hidden Markov Models/chains. Verterb is algorithm, Forward and backward algorithm for hidden Markov model. Parameter estimation in hidden Markov model when path is known as well as unknown, BaumWelch algorithm.

References

1. Alexander Isaac: (2001). Introduction to Mathematical Methods Bioinformatics. Springer.
2. Durbin R., Eddy S. Krogh A. Michelson G. (1998). Biological Sequence Analysis, Cambridge University Press.
3. 3. Robin S., Rudolph F, Schboth S. (2003) DNA Words and models Statistics of Exceptional Words, Cambridge University Press.

PAPER CODE	STA 530		
PAPER NAME	Computer Intensive Statistical Methods (Elective)		
CREDIT	04		
Objective: The main objective of this paper is to make students understand computational intensive methods for doing statistical inference.			Learning Outcome:
:---			
$\quad-\quad$ Understanding the basic ideas of Random Number Generation, Resampling and Simulation Methods.			
$\quad-\quad$ Enabled to apply computational methods, such as Monte Carlo simulations, the EM algorithm.			
\quad Knowing to use hierarchical Bayesian models to formulate and solve complex statistical problems.			

Unit-1 \quad Lectures: 11

Resampling Techniques: Re sampling paradigms, bias-variance trade-off. Bootstrap methods, estimation of sampling distribution, confidence interval, variance stabilizing transformation. Jackknife and cross-validation. Jackknife in sample surveys. Jackknife in regression under heteroscedasticity. Permutation tests.

Unit-2
 Lectures:11

Missing Values and Imputations Techniques: Missing values and types of missingness, imputations methods for missing values, single and multiple imputations, EM Algorithm
and Applications: EM algorithm for incomplete data, EM algorithm for mixture models,EM algorithm for missing values, stochastic EM algorithm.

Unit-3 Lectures: 11

Smoothing techniques: Kernel estimators, nearest neighbor estimators, orthogonal and local polynomial estimators, wavelet estimators. Splines. Choice of bandwidth and other smoothing parameters.

Unit-4 Lectures: 12

Bayesian computing, Markov Chain Monte Carlo. Simulation using MCMC, Particle filtering, MCMC methods for missing values

References

1. Buuren, Stef van (2012). Flexible Imputation of Missing Data. Chapman and Hall.
2. Chihara, L. and Hesterberg, T. (2011) Mathematical Statistics with Resampling andR. Wiley.
3. Davison, A.C. and Hinkley, D.V. (1997) Bootstrap methods and their Applications, Chapman and Hall.
4. Efron, B. and Tibshirani. R.J. (1994); An Introduction to the Bootstrap. Chapman
5. and Hall.
6. Christensen R, Johnson, W., Branscum A. and Fishman, G.S. (1996) Monte Carlo:Concepts, Algorithms, and Applications. Springer.
7. Gilks, W. R., Richardson, S., and Spiegelhalter, D. (eds.) (1995) Markov Chain MonteCarlo in Practice. Chapman and Hall.
8. Good, P. I. (2005) Resampling Methods: A Practical Guide to Data Analysis. BirkhauserBosel.
9. Hanson T. E. (2011). Bayesian Ideas and Data Analysis: An Introduction for Scientistsand Statisticians, Chapman Hall.
10. Jim, A. (2009). Bayesian Computation with R, 2nd Edn, Springer.
11. Kennedy W. J. Gentle J. E. (1980) Statistical computing. Marcel Dekker.
12. McLachlan, G.J. and Krishnan, T. (2008) The EM Algorithms and Extensions. Wiley.
13. Rubinstein, R.Y. (1981); Simulation and the Monte Carlo Method. Wiley.
14. Shao J. and Tu, D. (1995); The Jackknife and the Bootstrap. Springer Verlag.
15. 14. Tanner, M.A. (1996); Tools for Statistical Inference, Third edition. Springer.

1. Rao, C.R. Linear Statistical Inference and its Applications, Wiley Eastern.

TENTH SEMESTER

PAPER CODE	STA 504
PAPER NAME	Practicals
CREDIT	$\mathbf{0 2 (0 - 0 - 4)}$
Total hours	$\mathbf{3 0}$
	CONTENT
Practical based on elective papers opt by the students. There shall be at least five practicals exercises covered from each of the courses.	

Course Code	STA 505
Course Name	Project
Credits	10
	Guidelines for project

- Project duration: Students may start preliminary work related to their project after second semester.
- Project Guide: Teachers from the Department of Statistics and/or organization where student is going to visit for field work or training. Each project group will be guided by concerned teacher (guide) for 8 hour per week throughout the IV semester.
- Project Topic: Students in consultation with the guide will decide project topic. The modification on the title may be permitted after the pre-presentation as advised during the seminar in consultation with the supervisor. Project work may be carried out in a group of students depending upon the depth of fieldwork/problem involved.
- Project report: Project report should be submitted in typed form with binding within the time as stipulated be the Department.
- Project evaluation: Project evaluation will be based on
(i) Continuous evaluation of the work - 25 Marks awarded by supervisor
(ii) Project report and final presentation - 25 marks awarded by supervisor
(iii) Viva-voce and final presentation - 50 marks awarded by external expert

ELECTIVES for X-SEMESTER

Course Code	STA 542
Course Name	Econometrics
Credits	04

Objective:

The main objective is to introduce branch which is an integration of mathematics, statistics, and economics used to deal with econometric models.

Learning Outcome:

- Learning properties and problems of econometric models.
- Knowing the estimation and testing of hypothesis in econometric models.
- Understanding Simultaneous Equation Models.

Unit-1

Introduction of Econometrics, Multiple Linear Regression Model, Model with non-spherical disturbances, Test of Autocorrelation, restricted regression estimator, Errors in variables, Dummy variables, Logit and Probit Models

Unit-2

Seemingly unrelated regression equation (SURE) model and its Estimation, Simultaneous equations model, concept of structural and reduced forms problem of identification, rank and order condition of identifiability.

Unit-3

Methods of estimation of simultaneous equation model: indirect least squares, two stage least squares and limited information maximum likelihood estimation, idea of three stage least squares and full information maximum likelihood estimation, and prediction
Unit-4
Panel data models: Estimation in fixed and random effect models, Panel data unit root test

References

1. Apte, P.G.: Text books of Econometrics, Tata McGraw Hill.
2. Gujarathi, D.: Basic Econometrics; McGraw Hill.
3. Johnston, J.: Econometrics Methods. Third edition, McGraw Hill.
4. Srivastava, V.K. and Giles D. A. E.: Seemingly unrelated regression equations models, Marcel Dekker.
5. Ullah, A. and Vinod, H.D.: Recent advances in Regression Methods, Marcel Dekker.

Course Code	STA 543
Course Name	Extreme Value Theory (Elective)
Credits	04
Objective:	
Main Objective of this course is to introduce the concept extremal behaviour of the random variable and learn	
different procedures to identify the governing extremal Laws.	

Learning Outcome: Students will learn

- the behavior of Order Statistics and distribution of their functions.
- limiting behaviour of sample maxima and its convergence.
- implementation of diagnostic procedure to identify the domain of attractions.

Unit-1

Order Statistics: Distribution of first and last order statistics, Distribution of a single order statistic, Joint distribution of two consecutive order statistics, Distribution of Range, spacing between two order statistics, ratio of two order statistics. Illustrative examples considering different family of distributions.

Unit-2

Fluctuations of Maxima - Limit distribution of linearly normalized maxima, Weak convergence of maxima. Maximum Domains of attraction and Norming constants - The maximum domains of attractions of extreme value distributions. Von Mises' theorem. Fluctuations of univariate upper order statistics. The Generalized Extreme Value Distribution, The Generalized Pareto Distribution.

Unit-3

Diagnostic procedure to identify maximum domains of attractions: Hill Plot, Probability Paper Plot, Zipf's plot, QQ Plot, Mean Excess Plot, Sum Plot. Illustration contains different classes of distributions.

Test for identification of max domain of attractions: Hasofer and Wang's test, Segers and Teugels test, Ratio between Maximum to sum of excess.

Unit-4

Analysis the Hydrology, Insurance, Finance, Geology, Environment, Meteorology, Seismic dataset by graphical diagnostic procedure and fitting of suitable extreme value distributions.

References

1. Embrechts, P., Kluppelberg, C., \&Mikosch, T. (1999). Modellingextremal events. British Actuarial Journal, 5(2), 465-465.
2. Beirlant, J., Goegebeur, Y., Segers, J., \&Teugels, J. L. (2006). Statistics of extremes: theory and applications. John Wiley \& Sons.
3. Kotz, S., \&Nadarajah, S. (2000). Extreme value distributions: theory and applications. World Scientific.
4. Castillo, E., Hadi, A. S., Balakrishnan, N., \&Sarabia, J. M. (2005). Extreme value and related models with applications in engineering and science.

PAPER CODE	STA 549
PAPER NAME	Statistical Analysis of Clinical Trials (Elective)
CREDIT	$\mathbf{0 4}$
Objective: The course stresses on the concepts of statistical design and analysis in biomedical research, with special emphasis on clinical trials.	
Learning Outcome: Students can understand the key statistical components involved in the planning and conduct of clinical trials. Also awareness of different populations for analysis and understand which is appropriate to address specific research questions.	

Unit-1

Introduction to clinical trials: need and ethics of clinical trials, bias and randomerror in clinical studies, conduct of clinical trials, overview of Phase I-IV trials, multicenter trials. Data management: data definitions, case report forms, database design, data collection systems for good clinical practice. Bioavailability, pharmacokinetics and pharmacodynamics, two-compartment model.

Unit-2

Design of clinical trials: parallel vs. cross-over designs, cross-sectional vs. longitudinal designs, objectives and endpoints of clinical trials, design of Phase I trials, design of single stage and multi-stage Phase II trials. Design and monitoring of Phase III trials with sequential stopping, design of bio-equivalence trials. Inference for 2×2 crossover design: Classical methods of interval hypothesis testing for bioequivalence, Bayesian methods, nonparametric methods.

Unit-3

Power and sample size determination, multiplicative (or log-transformed) model, ML method of estimation, assessment of inter and intra subject variabilities, detection of outlying subjects. Optimal crossover designs: Balaams design, Two-sequence dual design. Optimal four period designs. Assessment of bioequivalence for more than two drugs, Williams design.

Unit-4

Designs based on clinical endpoints: Weighted least squares method, log-linear models, generalized estimating equations. Drug interaction study, dose proportionality study, steady state analysis. Interim analysis and group sequential tests, alpha spending functions. Analysis of categorical data.

References

1. Chow S.C. and Liu J.P.(2009). Design and Analysis of Bioavailability and bioequivalence. 3rd Edn. CRC Press.
2. Chow S.C. and Liu J.P. (2004). Design and Analysis of Clinical Trials. 2nd EdnMarcelDekkar.
3. Fleiss J. L.(1989). The Design and Analysis of Clinical Experiments. Wiley.
4. Friedman L. M. Furburg C. Demets D. L.(1998). Fundamentals of Clinical Trials, Springer.
5. Jennison .C. and Turnbull B. W. (1999). Group Sequential Methods with Applications to Clinical Trails, CRC Press.
6. Marubeni .E. and Valsecchi M. G. (1994). Analyzing Survival Data from Clinical Trialsand Observational Studies, Wiley.

